首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the application of a new regulation technique to a resonant converter that features zero-voltage (ZV) and zero-current (ZC) switching and works at constant frequency and duty cycle. The regulator utilizes the concept of regulating only a percentage of the total power in a bidirectional manner, thus allowing the converter to be optimized for both mass and efficiency. The proposed regulation technique has a wide range of applicability to almost all types of power converters or inverters that utilize a transformer to produce an isolated output. By using the concept of addition or subtraction of AC voltages, a fully regulated output voltage is achieved. The resultant effect of this regulation technique is that the main transformer of the converter or inverter appears to have a variable turns ratio. This turns ratio can be changed dynamically and in almost a lossless way to maintain the converter (or inverter) regulation. This technique can be used most effectively when input-voltage variation is limited to a reasonable tolerance range (e.g., + or -25%)  相似文献   

2.
In this article, a contactless power transfer system using a series–series–parallel resonant converter (SSPRC) is proposed. The proposed converter can improve on or eliminate the disadvantages of the contactless system based on conventional resonant converters, since it independently compensates for a primary side leakage inductance, a secondary side leakage inductance and a magnetising inductance. The proposed converter also reduces the circulating currents and the reactive power by controlling the phase angle difference between the inverter output voltage and the current. In addition, the system design can be simplified, since the voltage gain is determined only by the transformer turns ratio for the overall load range without being affected by the other transformer parameters. The proposed converter is analysed with respect to the gain and current margin. The system design procedure is then described for the proposed circuit based on the circuit analysis. Finally, the experimental results are presented in order to verify the proposed contactless power supply.  相似文献   

3.
A two-stage, two-wire TRIAC dimmable electronic ballast for fluorescent lamps is presented in this paper. It is constructed by using a flyback converter as the input power factor corrector to supply a half-bridge series-resonant parallel-loaded inverter to ballast the lamp. The flyback converter is operated in discontinuous conduction mode so that the filtered input current profile is the same as the TRIAC-controlled voltage waveform. The switches in the inverter are switched at a constant frequency slightly higher than the resonant frequency of the resonant tank. Based on the constant average input current characteristics of the inverter, the dimming operation is simply achieved by pulsewidth modulation control of the magnitude of the flyback converter output voltage. No synchronization network is required between the input and output stages. In addition, a linear power equalization scheme is developed so that the dc-link voltage (and hence the lamp power) is in a linear relationship with the firing angle of the TRIAC. The average output voltage of the dimmer controls the equalized flyback converter output voltage. Modeling, analysis, and design of the ballast will be described. A prototype was implemented to verify the experimental measurements with the theoretical predictions.  相似文献   

4.
A conventional DC-AC inverter can only output either a single-phase AC voltage or a set of three-phase AC voltages. A new three-port DC-AC inverter which can simultaneously output a single-phase AC voltage and a set of three-phase AC voltages is proposed in this paper. This three-port DC-AC inverter is based on the three-port T-type multi-level power converter which is composed of three T-type power electronic legs, a decoupling transformer set, a filter inductor set, a single-phase filter capacitor, and a three-phase filter capacitor set. The DC port of the proposed power converter is connected to a DC power source to act as the input port, and the single-phase AC port and the three-phase AC port serve as two output ports to supply power to the single-phase load and the three-phase load, respectively. The zero-sequence transformer is used to decouple the single-phase and three-phase AC components, which are generated by the three T-type power electronic legs. The operation principle of this three-port DC-AC inverter is analyzed, and a hardware prototype is established to verify the performance of the proposed three-port DC-AC inverter. The experimental results are as expected.  相似文献   

5.
This paper presents an efficient multilevel-synthesis scheme and its application to a 27-level inverter. In the proposed multilevel scheme, this can be realized by an array of switching devices composing full-bridge inverter modules and proper mixing of each transformer terminal voltage. The most different aspect, compared to the conventional approach, in the synthesis of the multilevel output waveform is the utilization of a combination of transformers rather than the accumulation of capacitor voltage sources. A 27-level inverter consists of three full-bridge modules and their corresponding transformers. Quasi-sinusoidal voltage waves can be generated from a suitable selection of the turns ratio of the transformer. The validity of the proposed system is verified by computer-aided simulation and experimental results using a 500-W prototype, which can generate a 110-V ac output voltage from a 12-V dc input.  相似文献   

6.
A soft-commutating method and control scheme for an isolated boost full bridge converter is proposed in this paper to implement dual operation of the well-known soft-switching full bridge dc/dc buck converter for bidirectional high power applications. It provides a unique commutation logic to minimize a mismatch between current in the current-fed inductor and current in the leakage inductance of the transformer when commutation takes place, significantly reducing the power rating for a voltage clamping snubber and enabling use of a simple passive clamped snubber. To minimize the mismatch, the method and control scheme utilizes the resonant tank and freewheeling path in the existing full bridge inverter at the voltage-fed side to preset the current in the leakage inductance of the transformer in a resonant manner. Zero-voltage-switching is also achieved for all the switches at the voltage-fed side inverter in boost mode operation. The proposed soft-commutating method is verified through boost mode operation of a 3-kW bidirectional isolated full bridge dc/dc converter developed for fuel cell electric vehicle applications. The tested result verified the isolated boost converter can operate at an input voltage of 8.5–15V and an output voltage of 250–420V with a peak efficiency of 93% and an average efficiency of 88% at 55-kHz switching frequency with 72$^circ$C automotive coolant.  相似文献   

7.
This paper will present a dead-time elimination scheme for a pulsewidth-modulation (PWM)-controlled inverter/converter. The presented dead-time elimination scheme does not require separated power supplies for freewheeling-current detection of high- and low-side power devices. The presented scheme includes the freewheeling-current polarity detection circuit and the PWM control generator without dead time. It will be shown that the presented scheme eliminates the dead time of PWM control for inverter/converter and therefore dramatically improves output voltage loss and current distortion. Experimental results derived from a field-programmable-gate-array-based PWM-controlled inverter are shown to demonstrate the effectiveness.   相似文献   

8.
A new output voltage control technique is proposed to obtain the improved buck-boost operation of the quantum series resonant power converter (QSRC). The new nonlinear dynamic model of QSRC is first derived and the cross-coupled nonlinear term existing in the output voltage dynamics is decoupled by using control methods such as the periodic control of the boosting switch (PCBS) and the resonant current control (RCC). By applying the state-space averaging concept to the decoupled dynamics, two linear large signal averaged models are obtained for PCBS and RCC schemes. Using the proposed technique, the flux imbalance problem of the isolation transformer and the robustness of the output voltage response can be easily considered. This technique can also be widely applicable to the cascade buck-boost power converter, which can be implemented by inserting a boosting switch between the output filter inductor and the ripple capacitor of the forward power converter. The validity of the proposed scheme is confirmed by the computer simulations and the experiments  相似文献   

9.
A multistage power CMOS-transmission-gate-based (CMOS-TG) quasi-switched-capacitor (QSC) boost DC-AC inverter is proposed and integrated with a boost DC-DC converter for a step-up application with AC or DC load. In this paper, using CMOS-TG as a bidirectional switch, the various topologies can be integrated in the same configuration for achieving two functions: boosting and alternating; boosting for getting a sinusoidal output in which the peak is the result of a many times step-up of the input; alternating to realize the positive/negative half sinusoidal of the output. The inverter does not require any inductive elements as inductor and transformer, so integrated circuit (IC) fabrication will be promising for realization. By using the state-space averaging technique, the large-signal state-space model of the inverter is proposed, and then both the static analysis and dynamic small-signal analysis are derived to form a unified formulation for inverter/converter. Based on this formulation, there are presented for theoretical analysis/control design, including steady-state power, conversion efficiency, voltage conversion ratio, output ripple percentage, capacitance selection, closed-loop control and stability, and total harmonic distortion (THD), etc. Finally, a six-stage QSC boost DC-AC inverter is simulated by PSPICE, and the simulations are discussed for some cases, including: 1) steady-state AC output, ripple percentage, and power efficiency; 2) transient response of the regulated inverter for load variation; 3) a practical capacitive load: electromagnetic luminescent (EL) lamp, and 4) efficiency, ripple percentage, and THD for different loads. The results are illustrated to show the efficacy of the proposed inverter.  相似文献   

10.
Forward converter regulator using controlled transformer   总被引:1,自引:0,他引:1  
A new control scheme is proposed for a forward power converter regulator using a controlled transformer. Pulse width modulation (PWM) control is used to reset the control core of the controlled transformer. As a result, a low-cost ferrite core can be used for the controlled transformer to achieve good regulation and high efficiency. Overall efficiency of 82-86% is achieved in a 200 kHz, 500 W, 5 V output regulator. A PWM-controlled transformer regulator is particularly suited for high-output-current and/or high-output-voltage postregulator applications  相似文献   

11.
The authors propose a new power converter control scheme for a converter-inverter system. The strategy is to fully utilize the inverter dynamics in controlling the converter dynamics. The authors obtain the power dynamics for both converter and inverter systems, and control the converter power so that it matches the required inverter power exactly. Then, in the ideal case, no power flows through the DC-link capacitors and, thus, the DC-link voltage does not fluctuate even though a very small amount of the DC-link capacitance is used. In forcing the converter power to match the inverter power, the authors utilize the master-slave control concept. They control the DC-link voltage level indirectly through the stored capacitor energy in order to exploit the advantage of the linear dynamic behavior of the capacitor energy. This helps them to circumvent a complex control method in regulating the DC-link voltage. Through simulation and experimental results, the superiority of the proposed converter control scheme is demonstrated  相似文献   

12.
葛文爽 《电子测试》2021,(5):117-118
变频器是利用电力半导体器件的通断作用将电压和频率不变的工频交流电源转化成电压和频率可调的交流电源,供给交流电动机实现软启动、变频调速等功能的电能变换控制装置。变频器交流调速系统具有良好的调速性能,而且运行效率高、可靠性强、节能效果也较为理想,是全球范围内公认较为先进的调速系统。而PLC是一种程序系统,把二者结合在一起,可实现变频器交流电机调速控制系统的自动化、科技化、智能化的控制。本文将设计探究基于PLC的变频器多段速控制,通过总体方案确定功能要求,选择软硬件,完成输入输出分配及接线端子的连接,最后通过变频器的参数设定和PLC的程序设计完成交流电机多段速控制的操作。  相似文献   

13.
In this paper, a high-performance single-phase transformerless online uninterruptible power supply (UPS) is proposed. The proposed UPS is composed of a four-leg-type converter, which operates as a rectifier, a battery charger/discharger, and an inverter. The rectifier has the capability of power-factor collection and regulates a constant dc-link voltage. The battery charger/discharger eliminates the need for the transformer and the increase of the number of battery and supplies the power demanded by the load to the dc-link capacitor in the event of the input-power failure or abrupt decrease of the input voltage. The inverter provides a regulated sinusoidal output voltage to the load and limits the output current under an impulsive load. The control of the dc-link voltage enhances the transient response of the output voltage and the utilization of the input power. By utilizing the battery charger/discharger, the overall efficiency of the system is improved, and the size, weight, and cost of the system are significantly reduced. Experimental results obtained with a 3-kVA prototype show a normal efficiency of over 95.6% and an input power factor of over 99.7%.   相似文献   

14.
In an onshore horizontal axis wind turbine, generator and converter are usually in the nacelle on the top of the tower, while the grid step-up transformer is placed at the bottom. Electric power is transmitted down through flexible cables of high current rating which are expensive and can suffer from large I2 R loss. An offshore wind turbine usually has to include the step-up transformer in the nacelle. This adds significantly to the mechanical loading of the tower even new designs aim to reduce the transformer size and weight. In either case, a transformer-less, high voltage, high reliability generating unit for nacelle installation would be an attractive technology for large wind turbines. This study presents a power electronic solution based on a permanent magnet generator design. A multilevel cascaded voltage source converter is developed to synthesize a high sinusoidal output voltage. The dc link voltages of inverter modules are balanced by rectifiers fed from isolated generator coils while the inverter switching strategy equalizes the power sharing between the modules. The switching strategy also reduces the low order harmonics to constrain the sizing of the dc link capacitors. The modulating effect between the ac and dc sides of the inverter is taken into account. This paper describes the generator-converter arrangement, analyzes the inverter switching effects and derives the switching strategy which is verified by simulation and laboratory experiment.  相似文献   

15.
A soft-switching converter is presented in this paper to achieve a zero-voltage-switching (ZVS) turn on for all switches. Two half-bridge converters with asymmetric pulsewidth-modulation scheme are connected in parallel to control the output voltage at the desired value and achieve load-current sharing. Based on the output capacitance of power switches and the resonant inductance, including the external inductance and the transformer leakage inductance, the resonance can be achieved at the transition interval of power switches. Therefore, the ZVS turn on of power switches can be realized. The peak voltage of the power switches is limited to input dc voltage. The center-tapped rectifier is adopted at the transformer secondary side to achieve a full-wave rectification. Operation principles, steady-state analysis, and design equations of the proposed converter are discussed in detail. Finally, experimental results based on a 240-W prototype are provided to verify the performance and the feasibility of the proposed converter.  相似文献   

16.
为了提高小型风力发电系统输出电能质量,设计了高效、可靠、低成本的正弦波逆变器。主电路由推挽升压变换器和单相逆变桥组成,采用高频变压器实现电压比调整和电气隔离,降低了噪声,提高了效率、减小了输出电压纹波。逆变器功率开关管采用了RCVD缓冲电路,确保逆变桥安全工作。控制部分采用集成脉宽调制芯片SG3524和正弦函数发生芯片ICL8038实现正弦波脉宽调制(SPWM),简单可靠、易于调试。实验样机体积减小到传统逆变器的1/4,效率达到86%。实验结果表明输出电压波形失真度小于5%,在复杂的工况下实现了220 V/50 Hz的市电输出。  相似文献   

17.
为了实现原边反馈反激变换器的高精度采样,提出了一种新型的数字采样控制算法。该算法根据变压器辅助绕组两端电压信息调整误差信号大小,并输入到内部控制环路实现对输出电压的稳定调节,相比于传统的采样电路,该方法省去了ADC或DAC电路,节省了控制电路的面积和功率的开销。本算法通过matlab仿真,且在一款5V/1A的AC-DC电源样机上验证了其有效性,其中恒压精度达到0.5%,表明该算法有很好的采样实时性、精确性和实用性。  相似文献   

18.
This paper proposes an optimized sequential control technique for copper electrowinning high-current rectifiers. The converter comprises two series-connected six-pulse double-wye rectifiers, a step-down transformer, and a tuned input filter. The six-pulse rectifiers are fed from delta and polygon primary windings with different turns ratio and phase shifted by 5°. Under the proposed control scheme, one rectifier is kept at nominal output voltage, and the other one is phase controlled to control the load's current. The proposed strategy greatly improves the rectifier's performance, reducing its reactive power maximum demand by 62% compared to conventional rectifiers and, therefore, reduces the input filters power rating also by 62%. This is accomplished while keeping the input power factor above 0.95 throughout the whole operating range. Further, the converter's reactive power consumption presents a low varying characteristic, allowing it to use a fixed filter, even when operating from a power system not capable of withstanding large reactive power variations. Finally, it presents a harmonic current distortion comparable to conventional 12-pulse high-current rectifiers. This paper presents the design and optimization procedure of the rectifying system. A 2.5 kVA laboratory prototype was used to validate the converter model, later employed in evaluating the converter operating in a 10.5 MVA copper electrowinning facility. The results obtained confirm the advantages of the proposed converter and its control strategy  相似文献   

19.
By using the PWM control scheme in the series resonant power converter (SRC) with inductive output filter, the converter can be operated at a constant frequency. This converter has lower switching loss than the PWM converter and better control characteristics than the ordinary SRC. Since the peak current in the present converter equals the load current, it has the lowest possible peak current stress among converters. The analysis and the performance characteristics of the converter operating at a constant switching frequency are presented. Experimental results are given to confirm the analytical work  相似文献   

20.
A new control method of a class-E rectifier is presented, which regulates the output voltage or power with elimination of the voltage pulse of the rectifier at a constant rate. When the class-E rectifier controlled by this method is used in a class-E DC/DC power converter, both the inverter and rectifier operate under zero-voltage-switching conditions. Since the rectifier is controlled by a synchronized switch, it achieves the following advantages: (1) power efficiency for low-output voltage is improved; (2) output voltage and power are controllable at a fixed operating frequency; and (3) switching noise can be reduced. Additionally, this method is suitable for applications in which the output voltage or power are changed immediately because the output voltage and power are controlled by means of replacements of pulse patterns. The output characteristics of the rectifier are analyzed under a condition that the amplitude of the input current is constant. Experimental results show good agreement with the theoretical results  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号