首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 804 毫秒
1.
The kinetics of SnS evaporation from SnS-Cu2S melts was investigated by a unique experimental method. It is shown that the process is controlled by the mass transport of SnS in gas phase. The evaporation rate of SnS is significantly enhanced by increasing tempeature and carrier gas flow rate. The apparent activation energy for the process is found to be 204.67 kJ. The evaporation rate for the present system is much smaller than that for SnS-FeS system.  相似文献   

2.
The volatilization kinetics of antimony trisulfide in steam atmosphere was studied with thermogravimetry at temperatures from 923 to 1123 K. A theoretical model was developed to calculate the overall rate constant and the mass transfer coefficient in gas phases. The experimental results show that the volatilization rate is enhanced with increasing temperature and steam flow rate. The volatilization rate is mainly controlled by the mass transport in gas phases. The apparent activation energy for the process is found to be 59.93 kJ/mol. It is demonstrated that Sb2S3 is dominantly oxidized into Sb2O3 and H2S by water vapor in the volatilization process. Some antimony metal is formed. The reaction mechanism is discussed in accordance with experimental data.  相似文献   

3.
Mathematical and physical models of water deoxidation in a batch aluminum degassing reactor using the rotor-injector technique were developed. The mathematical model was successfully validated against measured degassing kinetics. The physical model was employed to perform a process analysis using a two-level factorial experimental design to determine the influence of gas flow rate, impeller angular velocity, and gas injection points on gas consumption efficiency and degassing kinetics. A combination of higher rotor speeds and gas flow rates results in fast degassing kinetics. However, moderate gas flow rates are recommended to save gas.  相似文献   

4.
二维金属硫化物材料具有较低的电子噪声以及极大的比表面积, 使其非常适合用作气敏材料, 因此寻求高效可控的方法制备二维金属硫化物材料是目前的研究热点。本研究使用高温化学浴法制备了不同形貌的高结晶二维六方SnS2纳米片。采用不同手段对制备的SnS2纳米片进行表征, 并进一步研究了SnS2纳米片的气敏性能。结果显示: 油酸、油胺用量(体积)相同时, 产物SnS2的形貌是均一的六角形纳米片, 其直径约150 nm, 厚度约4~6 nm。气敏测试表明该SnS2纳米片对NO2气体具有良好响应, 且响应过程可逆, 选择性好。其最佳工作温度为130 ℃, 响应和恢复时间分别为98和680 s。  相似文献   

5.
低温推进剂贮箱增压过程的传热传质数学模拟   总被引:1,自引:0,他引:1  
针对火箭发动机地面试验中低温液氧贮箱的预增压和增压过程建立了气相空间的传热、传质数学模型.运用实际气体的状态方程、连续性方程、能量守恒方程以及推进剂与气相空间的传热、传质方程等组成了关于气相空间参数的微分方程组,并运用四阶Runge-Kutta算法对其进行求解.获得了气相空间的压力、温度、增压气体流量、液氧挥发速率以及贮箱壁温等参数的变化规律.结果表明,在发动机启动前的预增压过程中,气相空间的温度和压力急剧增加,液氧的挥发速率也增加很快;发动机启动后的保持增压阶段,由于气相空间的体积不断发生变化,气相空间参数的变化趋于平缓,液氧表面向气相空间的传质速率也趋于稳定.  相似文献   

6.
为了了解和控制乳化炸药中硝酸铵-亚硝酸钠反应的发泡速率,采用减重法和量气法研究了该反应过程的反应机理和反应动力学。结果表明,酸可作为催化剂,对整个反应过程起促进作用;其次,在酸作为催化剂条件下,反应速率随着实验温度的增加而增加,且反应符合Arrhenius模型。其中,反应活化能为57.87 kJ/mol,指前因子为1.48×10~6 mol/L·s。对比实验值和计算值可知,反应动力学方程合理。为实际生产中化学敏化反应速率的控制提供了理论依据。  相似文献   

7.
Tin sulfide (SnS) is an attractive anode for sodium ion batteries (NIBs) because of its high theoretical capacity, while it seriously suffers from the inherently poor conductivity and huge volume variation during the cycling process, leading to inferior lifespan. To intrinsically maximize the sodium storage of SnS, herein, lithium azides (LiN3)-induced SnS quantum dots (QDs) are first reported using a simple electrospinning strategy, where SnS QDs are uniformly distributed in the carbon fibers. Taking the advantage of LiN3, which can effectively prevent the growth of crystal nuclei during the thermal treatment, the well-dispersed SnS QDs performs superior Na+ transfer kinetics and pseudocapacitive when used as an anode material for NIBs. The 3D SnS quantum dots embedded uniformly in N-doped nanofibers (SnS QDs@NCF) electrodes display superior long cycling life-span (484.6 mAh g−1 after 5800 cycles at 2 A g−1 and 430.9 mAh g−1 after 7880 cycles at 10 A g−1), as well as excellent rate capability (422.3 mAh g−1 at 20 A g−1). This fabrication of transition metal sulfides QDs composites provide a feasible strategy to develop NIBs with long life-span and superior rate capability to pave its practical implementation.  相似文献   

8.
SnS2 nanobelts were successfully synthesized through a controllable solution-phase hydrothermal method on a large scale. The nanobelts have a very high yield, which is more than 95%, with widths ranging from 100 to 200 nanometers, lengths up to several micrometers and thicknesses ca. 10 nanometers. X-ray diffraction patterns, electronic diffraction, X-ray photoelectron spectra, field emission scanning electron microscopy images, transmission electron microscopy images and high-resolution transmission electron microscopy investigated the phase structures, compositions, and morphologies of SnS2 nanobelts. Dodecanethiol played important roles in the process of SnS2 nanobelts formation and growth. The formation mechanism of SnS2 nanobelts was investigated and discussed on the basis of the experimental results.  相似文献   

9.
10.
The flexible polyimide substrates were utilized to realize the flexibility of SnS thin films and SnS-based heterojunctions. The SnS thin films and ZnO/SnS heterojunctions were deposited on polyimide substrates by magnetron sputtering. The properties of SnS thin films and ZnO/SnS heterojunctions were studied. The experimental results show that the post annealing can enhance the degree of crystallinity of flexible SnS thin films. The annealed SnS thin films present polycrystalline structure with preferential orientation along the (040) plane and grain size of 18 nm. The compositions of as-deposited and annealed flexible SnS thin films are close to the stoichiometry of SnS. The direct band gaps are 1.48 and 1.32 eV for the as-deposited and annealed SnS thin films, respectively. The fabricated flexible ZnO/SnS heterojunctions show rectifying properties with the rectifying ratio of 6.85 and the diode ideal factor of 1.23. The experimental results indicate the feasibility of using polyimide as the substrates of SnS thin films and SnS-based heterojunctions.  相似文献   

11.
《Advanced Powder Technology》2020,31(8):3191-3204
In this study, a two-dimensional population balance model with solvent removal kinetics has been developed to predict the dynamic behavior of carbamazepine form II crystals produced by a supercritical CO2 antisolvent batch crystallization process. The model was simulated and validated using experimental crystal size distribution data (CSD). The model was able to accurately predict the behavior of CSD with a change in process operating conditions. The model was also applied to study the time evolution of aspect ratio, average crystal length, and solute concentration in the solution. Finally, solvent removal kinetics were modeled to evaluate the solvent content and drying temperature of the drying gas during the solvent removal process. The developed mathematical model and the presented results suggest the ability of the discussed approach to make suitable model predictions, which can significantly reduce the number of experimental trials required for process design, optimization, and control.  相似文献   

12.
13.
《Thin solid films》1987,146(1):55-64
A chemical vapour deposition process was used to deposit aluminium onto a pure nickel substrate which was not in contact with the powder mixture. After deposition for about 1 h the aluminium content at the surface reached a high value and then remained almost constant with time. The kinetics of the process is governed by a combination of solid and gas diffusion rates, and a qausi-steady-state appears to exist at the gas-coating interface. The experimental results can be explained satisfactorily by a combination of a stagnant film model for gaseous diffusion and solid diffusion rates.  相似文献   

14.
Tin sulfide (SnS) 3D flowers containing hierarchical nanosheet subunits are synthesized using a simple polyol process. The Li ion cells incorporating SnS 3D flowers exhibit an excellent rate capability, as well as good cycling stability, compared to SnS bulks and Sn nanoparticles. These desirable properties can be attributed to their unique morphology having not only large surface reaction area but also enough space between individual 2D nanosheets, which alleviates the pulverization of SnS.  相似文献   

15.
通过差热-热重分析研究了ZrB2含量为10 %的ZrO2-C-ZrB2复合材料在800~1100℃下空气中的氧化动力学,根据气固相反应原理建立氧化动力学模型,计算反应表观活化能,并得到氧化速率与温度的经验关系式。结果表明,试样在 800℃时的氧化过程仅有化学反应控速阶段与化学反应和气体扩散共同作用的混合控速阶段。900~1100℃的氧化过程为前期是化学反应控速阶段,中期为混合控速阶段,后期为扩散控速阶段。三个阶段的表观活化能分别为111.7、71.5和166.0kJ·mol-1 。材料等温氧化的质量变化规律表明在900℃~1100℃内的氧化属于保护型氧化。  相似文献   

16.
The lithium and sodium storage performances of SnS anode often undergo rapid capacity decay and poor rate capability owing to its huge volume fluctuation and structural instability upon the repeated charge/discharge processes. Herein, a novel and versatile method is described for in situ synthesis of ultrathin SnS nanosheets inside and outside hollow mesoporous carbon spheres crosslinked reduced graphene oxide networks. Thus, 3D honeycomb‐like network architecture is formed. Systematic electrochemical studies manifest that this nanocomposite as anode material for lithium‐ion batteries delivers a high charge capacity of 1027 mAh g?1 at 0.2 A g?1 after 100 cycles. Meanwhile, the as‐developed nanocomposite still retains a charge capacity of 524 mAh g?1 at 0.1 A g?1 after 100 cycles for sodium‐ion batteries. In addition, the electrochemical kinetics analysis verifies the basic principles of enhanced rate capacity. The appealing electrochemical performance for both lithium‐ion batteries and sodium‐ion batteries can be mainly related to the porous 3D interconnected architecture, in which the nanoscale SnS nanosheets not only offer decreased ion diffusion pathways and fast Li+/Na+ transport kinetics, but also the 3D interconnected conductive networks constructed from the hollow mesoporous carbon spheres and reduced graphene oxide enhance the conductivity and ensure the structural integrity.  相似文献   

17.
Yang Li  Huaqing Xie 《Materials Letters》2009,63(21):1785-1787
Net-like nanostructured SnS/carbon composite was prepared by heating mixture of SnS nanoparticles and resorcinol-formaldehyde sol at 650 °C. The morphology and structure of prepared SnS and SnS/carbon composite were studied by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical investigation indicated that SnS/carbon composite presented superior electrochemical performances than pristine SnS. SnS/carbon composite had better capacitive response in cyclic voltammetry and could deliver larger specific capacitance of 36.16 F/g in galvanostatical charge-discharge process. Net-like structure of SnS/carbon composite and good conductivity of carbon were considered to be responsible for its preferable electrochemical performances.  相似文献   

18.
Numerical calculations of the evaporation kinetics of bulk volatile liquids and of water from smectite clay granules are compared with experimental results. The weight loss of the volatiles is analyzed by thermogravimetry and differential calorimetry. Under the thermodynamic conditions of the experiments, finite element calculations are in good agreement with the experimental data, and an approximate semi-analytical model is developed in order to explain the dependence of the rate of evaporation on the temperature, the chemical species and the carrier gas flow rate. The initial rate of evaporation of water from the clay granule is close to that for bulk water. Its decrease with time is determined mainly by changes in the gas/condensed phase partition given by the equilibrium desorption isotherm, with little limitations due to internal diffusion effects for the present experimental conditions. Its temperature dependence could also be approximately described by an Arrhenius-type equation derived from the semi-analytical model. Further analysis of the experimental measurements reveals steps in the heat of vaporization of water as a function of water concentration, that could be related to the equilibrium desorption isotherm.  相似文献   

19.
Experiments were conducted to investigate the fate of ethylbenzoate and soil microorganisms in shallow aquifers. Biodegradation and volatilization have been identified as the major mechanisms in attenuating ethylbenzoate in contaminated soils. The rate of volatilization was experimentally found to be limited by gas-phase diffusion. The parameters of an available model, i.e., the maximum specific growth rate and the saturation constant, have been estimated by fitting the model to the experimental data obtained with ethylbenzoate as the carbon source; the former was 0.49 h−1, and the latter was 62 mg L−1. Various facets of biodegradation, including the effects of mass-transfer resistance and initial distribution of microorganisms, have been numerically analyzed on the basis of the model.  相似文献   

20.
渗透汽化-蒸馏-酯化反应耦合过程动力学   总被引:4,自引:0,他引:4  
研究了将渗透汽化与传统的反应蒸馏相结合,用于酯化反应脱水的工艺过程,建立了渗透汽化-蒸馏-酯化反应耦合动力学模型,并分析了膜面积、蒸发量等因素的影响。通过实验测定了渗透汽化的脱水速率及酯化反应速度常数和平衡常数,蒸馏计算程序得到了馏出液组成与实验结果基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号