首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 640 毫秒
1.
TRISO燃料颗粒由核芯和4层包覆层组成,具有良好的裂变产物包容能力。TRISO燃料颗粒破损概率是表征TRISO燃料事故安全特性的关键参数。本文基于修正的PANAMA破损概率计算方法,在考虑UN核芯裂变气体释放导致的气体内压以及内外致密热解炭层辐照蠕变和收缩作用的基础上,开发了UN核芯TRISO燃料颗粒压力壳式破损概率计算方法,并采用IAEA基准题6和基准题9对模型进行了验证;基于开发的UN核芯TRISO颗粒破损概率计算方法,采用随机抽样统计方法分析了事故工况下UN核芯和包覆层设计参数(包括包覆层尺寸及密度)对UN核芯TRISO燃料颗粒破损概率的影响。研究结果显示,疏松热解炭(Buffer)层设计参数是影响TRISO颗粒破损概率的关键因素,可通过降低Buffer层尺寸及密度分布设计标准偏差的方法降低UN核芯TRISO燃料颗粒的破损概率。  相似文献   

2.
TRISO燃料颗粒由核芯和4层包覆层组成,具有良好的裂变产物包容能力。TRISO燃料颗粒破损概率是表征TRISO燃料事故安全特性的关键参数。本文基于修正的PANAMA破损概率计算方法,在考虑UN核芯裂变气体释放导致的气体内压以及内外致密热解炭层辐照蠕变和收缩作用的基础上,开发了UN核芯TRISO燃料颗粒压力壳式破损概率计算方法,并采用IAEA基准题6和基准题9对模型进行了验证;基于开发的UN核芯TRISO颗粒破损概率计算方法,采用随机抽样统计方法分析了事故工况下UN核芯和包覆层设计参数(包括包覆层尺寸及密度)对UN核芯TRISO燃料颗粒破损概率的影响。研究结果显示,疏松热解炭(Buffer)层设计参数是影响TRISO颗粒破损概率的关键因素,可通过降低Buffer层尺寸及密度分布设计标准偏差的方法降低UN核芯TRISO燃料颗粒的破损概率。  相似文献   

3.
弥散微封装燃料是将包覆燃料颗粒弥散在基体中形成燃料芯块或者燃料棒,是目前耐事故燃料(ATF)中最具发展潜力的燃料之一。包覆燃料颗粒为三结构同向型(TRISO)或者两结构同向型(BISO)包覆燃料颗粒,基体可以是金属也可以是陶瓷。本文用有限元分析软件ABAQUS对金属基弥散微封装燃料进行了分析计算。通过分析TRISO燃料颗粒各包覆层厚度对燃料性能的影响,提出优化改进的建议。研究结果表明,疏松热解碳层(Buffer)厚度越大,燃料颗粒发生破损失效的燃耗越高,因此设计时应考虑增加其厚度;内部致密热解碳层(IPyC)厚度越大,其自身的最大环向拉应力越大,因此设计时应降低其厚度;碳化硅(SiC)层厚度越大,其自身环向压应力越小,因此设计时应降低其厚度。本文的研究结果可为金属基弥散微封装燃料的优化设计提供指导。   相似文献   

4.
为分析致密热解碳层、内压等因素对TRISO包覆燃料颗粒热-力学性能的影响,基于多物理场耦合软件COMSOL建立了以UN为核芯的TRISO包覆燃料颗粒三维热-力学耦合模型,并通过IAEA CRP-6基准题进行了验证。利用本文模型对稳态运行及反应性引入事故(RIA)工况下典型TRISO包覆燃料颗粒的性能进行了分析,结果表明,正常运行工况下SiC层能维持结构完整性,但IPyC层存在失效风险,需进一步优化TRISO包覆燃料颗粒的设计方案,而RIA工况下热膨胀是造成TRISO包覆燃料颗粒发生结构失效的主要原因。该模型能对轻水堆运行环境下的TRISO包覆燃料颗粒进行复杂的多物理场耦合性能分析,为进一步优化FCM燃料元件设计打下基础。  相似文献   

5.
三结构同向性型(Tristructural isotropic,TRISO)包覆燃料颗粒是目前高温气冷堆和固态燃料熔盐堆采用的燃料元件。TRISO包覆燃料颗粒破损会导致裂变产物不可接受的释放,由此影响反应堆的安全运行。基于TRISO包覆燃料颗粒压力壳式破损模型,分析了TRISO包覆燃料颗粒核芯和各包覆层的尺寸对失效概率的影响,研究了TRISO包覆燃料颗粒核芯半径、疏松热解碳(Buffer)层厚度和碳化硅(Si C)层厚度的合理设计范围。同时,利用随机抽样统计的方法分析了TRISO包覆燃料颗粒核芯半径分布和各包覆层厚度分布对颗粒失效概率的影响。研究发现,降低Buffer层厚度分布的标准差至16μm可以使TRISO包覆燃料颗粒的失效概率降低一个数量级。  相似文献   

6.
棱柱型弥散微封装燃料是将三重各向同性包覆(TRISO)燃料颗粒弥散于金属或陶瓷基体形成的颗粒增强复合燃料,具有良好的结构稳定性、裂变产物包容能力和辐照稳定性,是高温气冷堆中较具发展前景的燃料形式之一。本文提出将TRISO燃料颗粒弥散于SiC基体的棱柱型弥散微封装燃料设计方案,并基于有限元分析软件COMSOL建立了该燃料元件三维热流固耦合分析模型,初步实现了该燃料元件性能分析和优化设计。结果表明,棱柱型弥散微封装燃料元件的温度最大值位于燃料元件外侧,应力峰值位于冷却剂通道壁面,边距比为0.76~0.84、孔距比为0.68~0.75时燃料元件热应力最小。本文建立的棱柱型弥散微封装燃料性能分析方法和研究结论,可为后续该型气冷堆燃料元件设计提供指导和参考。   相似文献   

7.
为分析球床型氟盐冷却高温堆(PB-FHR)堆芯的关键中子学参数,建立了显式随机模型,基于随机填充方法计算了燃料球石墨基质内所有三层各向同性包覆颗粒(TRISO)颗粒的空间坐标,并采用离散元方法计算出堆芯活性区内全部燃料球的空间坐标。最后采用蒙特卡罗程序开展中子输运计算,分析燃料颗粒随机分布对堆芯中子学参数的影响。研究结果表明,TRISO颗粒的随机分布对栅元增殖系数、栅元群截面、活性区燃料球功率的影响较小,本文研究可为简化PB-FHR设计提供理论依据。   相似文献   

8.
由于三层各向同性(TRISO)颗粒弥散型燃料元件结构复杂且其材料性能随着辐照水平不断变化,不同燃耗下燃料元件的等效热导率不易确定。本研究基于COMSOL软件完成了TRISO颗粒性能分析程序开发,并与BISON程序预测值进行了对比分析。随后,基于COMSOL软件与MATLAB联合仿真建立了球形燃料元件等效热导率的计算方法,实现了球形燃料元件和TRISO颗粒模型间的在线耦合计算。在此基础上,获得了不同边界温度、燃耗条件下燃料元件径向等效热导率分布及温度场分布。计算结果表明,快中子注量达到3×1025m–2时,TRISO等效导热率下降约20%,燃料等效热导率下降约15 W/(m·K)。为了验证本研究方法的有效性,用微分-有效介质理论模型(D-EMT)计算燃料的等效导热率,得到的球形燃料中心温度预测值相比本研究方法的预测值低约25 K。本文研究方法更能真实反映球形燃料元件在反应堆内的温度场变化。  相似文献   

9.
三向同性燃料(TRISO)颗粒是高温气冷堆元件和弥散微封装燃料最核心的组成部分,在反应堆运行过程中,TRISO颗粒在辐照-热-力多物理场的作用下发生变形、产生温度梯度及颗粒内部裂变产物扩散等行为,为研究TRISO颗粒在高温气冷堆环境下的堆内行为,本文通过设置边界条件,定义燃料材料物性模型,建立了辐照-热-力耦合作用下TRISO颗粒的多物理场计算方法,应用三维有限元平台对TRISO颗粒的堆内行为进行分析。结果表明,TRISO颗粒核芯温度随核芯功率增大而增大,但相应的温度梯度绝对值变化较小;颗粒中疏松热解碳层(Buffer层)与内致密热解碳(IPyC)层产生间隙,且寿期末间隙尺寸随核芯功率增大而降低;TRISO颗粒中IPyC层受到较大拉应力,而SiC层只有在较高的核芯功率下,才会受到拉应力,且最大拉应力随核芯功率增大而增大,这导致高核芯功率下SiC层的失效概率达到2.2×10-6。SiC层对110Ag、90Sr、137Cs等裂变产物具有优良的包容能力,在寿期末,SiC层以外几乎不存在裂变产物,这验证了T...  相似文献   

10.
为研究三结构各向同性(TRISO)燃料颗粒裂变产物扩散释放特性,建立了辐照-热-力耦合作用下TRISO包覆燃料颗粒裂变产物Fick扩散模型,并通过IAEA CRP-6基准题进行了验证;利用所建模型对高温气冷堆典型工况下TRISO包覆燃料颗粒的性能进行了分析,同时,考虑裂变产物的反冲效应和热扩散效应,对TRISO包覆燃料颗粒不同温度及颗粒功率下裂变产物释放特性进行了分析。研究结果表明,高温会使TRISO包覆燃料颗粒裂变产物包容能力丧失,功率的提升则对裂变产物的释放影响较小。  相似文献   

11.
TRISO (tri-structural isotropic) fuel particle consists of a fuel kernel in the center coated with four layers, with good fission product retention capability. The effective thermal conductivity of TRISO fuel particle is an important basis for calculating the effective thermal conductivity of dispersed fuels. In the present work, the theoretical model of the effective thermal conductivity of TRISO particle is built based on the theory of the effective thermal conductivity in multiphase solids in the framework of spherical coordinate and then the effective thermal conductivity of metal matrix microencapsulated fuel (M3) is analyzed combined with the Chiew-Glandt model which is the effective thermal conductivity model for solid-solid binary composite. The results show that the present model provides an excellent prediction of the thermal conductivity of TRISO particle. Finally the effective thermal conductivity of fully encapsulated fuel (FCM) is presented.  相似文献   

12.
全陶瓷微密封(FCM)燃料是一种弥散颗粒燃料。由于弥散颗粒燃料存在双重非均匀性,传统的确定论方法及蒙特卡罗方法皆难以处理这种双重非均匀效应以获得有效多群截面。本文基于超细群方法建立FCM燃料的有效多群截面计算方法。为描述燃料棒内TRISO颗粒的非均匀性,在共振能量段,通过采用超细群方法求解包含TRISO颗粒的一维球模型得到超细群缺陷因子,通过超细群缺陷因子修正所有核素的超细群截面即可将颗粒和基质均匀化。由于TRISO颗粒在热能区也存在较强的自屏效应,在热能区,利用穿透概率及碰撞概率等价得到多群缺陷因子,通过多群缺陷因子修正所有核素的多群截面将燃料和基质均匀化。均匀化后的FCM燃料组件即可视为普通压水堆燃料组件进行共振计算。利用丹可夫修正因子等价得到FCM燃料组件各燃料棒的等效一维棒模型,对一维棒模型求解超细群慢化方程从而得到共振能量段的有效自屏截面。数值结果表明,该方法能有效处理FCM燃料的双重非均匀性,得到精确的有效自屏截面。  相似文献   

13.
High temperature gas reactors (HTGRs) are being considered for near term deployment in the United States under the GNEP program and farther term deployment under the Gen IV reactor design (U.S. DOE Nuclear Energy Research Advisory Committee, 2002). A common factor among current HTGR (prismatic or pebble) designs is the use of TRISO coated particle fuel. TRISO refers to the three types of coating layers (pyrolytic carbon, porous carbon, and silicon carbide) around the fuel kernel, which is both protected and contained by the layers. While there have been a number of reactors operated with coated particle fuel, and extensive amount of research has gone into designing new HTGRs, little work has been done on modeling and analysing the degradation rates of spent TRISO fuel for permanent geological disposal. An integral part of developing a spent fuel degradation modeling was to analyze the waste form without taking any consideration for engineering barriers. A basic model was developed to simulate the time to failure of spent TRISO fuel in a repository environment. Preliminary verification of the model was performed with comparison to output from a proprietary model called GARGOYLE that was also used to model degradation rates of TRISO fuel. A sensitivity study was performed to determine which fuel and repository parameters had the most significant effect on the predicted time to fuel particle failure. Results of the analysis indicate corrosion rates and thicknesses of the outer pyrolytic carbon and silicon carbide layers, along with the time dependent temperature of the spent fuel in the repository environment, have a significant effect on the time to particle failure. The thicknesses of the kernel, buffer, and IPyC layers along with the strength of the SiC layer and the pressure in the TRISO particle did not significantly alter the results from the model. It can be concluded that a better understanding of the corrosion rates of the OPyC and SiC layers, along with increasing the quality control of the OPyC and SiC layer thicknesses, can significantly reduce uncertainty in estimates of the time to failure of spent TRISO fuel in a repository environment.  相似文献   

14.
In this research paper a reactivity control technique has been suggested for the conceptual design of a compact sized pressurized water reactor (PWR) core with an inventive tristructural-isotropic (TRISO) fuel particle composition. This conceptual design is a light water cooled and moderated reactor which utilizes TRISO fuel particles in PWR technology. The use of TRISO fuel in PWR technology improves integrity of the design due to its fission fragments retention ability. The fuel provides first retention barrier within fuel itself against the release of fission fragments that makes this design concept safer and environment friendly. The suggested TRISO fuel particle composition has a small amount of Pu-240 with 2.0 w/o in the place of U-238 which acts as reactivity suppressor. Reactor codes WIMS-D/4 and CITATION have been used for simulation and core design modeling. Results reveals that the amount of excess reactivity can be reduced significantly by using a small amount of Pu-240 in TRISO fuel which in turns reduces the number of gadolinia rods in the core required for excess reactivity control and completely eliminates the requirement of soluble boron system. Therefore the effective and optimal use of reactivity suppressor and burnable poison suppresses and flattens the core excess reactivity throughout the core life and hence number of control rods can be reduced without compromising on the shutdown margin.  相似文献   

15.
In a pebble-bed type very high temperature gas-cooled reactor (VHTGR), a typical fuel pebble consists of over ten thousand five-layer TRISO particles in a graphite-matrix. The high heterogeneity in composition leads to difficulty in explicit thermal calculation of pebble fuels. Thus, a homogenization model becomes essential. Currently, a simple volumetric-average thermal conductivity approach is used. However, this approach is non-conservative and underestimates the fuel temperature.  相似文献   

16.
The dominating mechanism in the passive safety of gas-cooled, graphite-moderated, high-temperature reactors (HTRs) is the Doppler feedback effect. These reactor designs are fueled with submillimeter-sized kernels formed into tristructural-isotropic (TRISO) particles that are imbedded in a graphite matrix. The best spatial and temporal representation of the feedback effect is obtained from an accurate approximation of the fuel temperature. Micro-scale models of TRISO particles are necessary in order to obtain accurate predictions during fast transients or when parameters internal to the TRISO are needed. Most accident scenarios in HTRs are characterized by large time constants and slow changes in the fuel and moderator temperature fields. In these situations, a meso-scale, or pebble- and compact-scale, solution provides a good approximation of the fuel temperature as the fission thermal energy transports out of the kernel and into the surrounding matrix with a much shorter time constant. Therefore, in most cases, the matrix can be assumed to be in quasi-static equilibrium with the kernels. These models, however, fail to provide accurate information on the state of the various components of the TRISO during the early stages of transients. Since the coated particles constitute one of the fundamental design barriers for the release of fission products, it becomes important to understand the transient behavior inside this containment system. An explicit TRISO fuel temperature model named THETRIS has been developed and incorporated into the CYNOD–THERMIX-KONVEK suite of coupled codes. The code includes gas-release models that provide a simple predictive capability of the internal pressure during transients. The new model yields similar results to those obtained with other micro-scale fuel models of TRISO particles, but with the added capability to analyze gas release, internal pressure buildup, and effects of a gap in the TRISO. Analysis of bounding benchmark transients yield good agreement with other codes in which the TRISO particles are modeled explicitly. In addition, a sensitivity study of the potential effects on the transient behavior of high-temperature reactors due to the presence of an inter-layer gap is included. Although the formation of a gap occurs under special conditions, its consequences on the dynamic behavior of the reactor can yield responses during fast transients that depart significantly from those in which no gap is present in the model. The new model was applied to an extreme (beyond design basis) scenario in order to observe the behavior of the fuel during a large prompt critical reactivity insertion. Although a large amount of fission energy was deposited rapidly into the fuel, the kernel temperature is shown to stay well below the melting point and the silicon carbide layer remained well below the temperature above which failure is expected to occur. The explicit treatment of the TRISO particle geometry leads to much lower estimations of power peaking during the transient and a greater degree of negative Doppler feedback.  相似文献   

17.
The TRISO particle design of high temperature reactors fueled with plutonium (Pu) and/or minor actinides (MAs) is investigated by calculating the failure fraction of TRISO particles during irradiation. For this purpose, a fuel depletion, neutronics and thermal-hydraulics code system, which delivers the fuel temperature, fast neutron flux and power density profiles, is coupled to an analytical stress analysis code. The latter is being further developed for the calculation of a reliable and realistic failure fraction. The code system has been applied to a PBMR-400 design containing TRISO particles fueled with 1st and 2nd generation plutonium and with a target burn-up of 700 and 600 MWd/kgHM, respectively. It is shown that the pebble-bed type high temperature reactor under consideration is a promising option for burning Pu and MAs if very high burn-ups can be achieved. The TRISO particle failure fraction is also calculated for both Pu and MA fuels, and compared to U-based fuel. It is shown by the present stress analysis code that the Pu-based fuel particles need a better design and this has been achieved for the MA-based fuel, in which helium gas atoms have a significant contribution to the buffer pressure.  相似文献   

18.
The effective thermal conductivity (ETC) of dispersion fuels plays an important role in nuclear reactor safety analysis and fuel performance evaluation. In this study, based on the theory of porous body, considering the relativity of dispersion particle distributions, an ETC model of dispersion fuels was proposed and validated. The effect of porosity, fuel volume fraction and fuel-matrix thermal conductivity ratio on the ETC were investigated. The results show that the ETC decreases along with the increasing of fuel volume fraction and porosity; the higher the fuel-matrix thermal conductivity ratio is, the less the effect of fuel volume fraction on the ETC of dispersion fuel is.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号