首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
选用自制的含5%羟基磷灰石晶种、以α-磷酸三钙为主要成分的固相粉末,和丁二酸钠溶液为液相材料,以一定的固液比例混合后置于φ10mm×10mm磨具中,在模拟人体环境(37℃,1.5倍模拟体液浸泡)下反应,选取反应不同时间的样品块.通过对样品块表面及内部进行X光衍射分析、扫描电子显微镜观察,研究了以α-磷酸三钙为主要成分的矿物相骨修复材料在模拟人体环境下,固化过程中材料相组成的变化情况,以及体液浸泡时间对样品相转化的影响.实验结果表明,材料固化过程中相转化情况与模拟体液浸泡情况有关,材料表面与内部相转化速度不同,内部先于外部完成相转化,没有完全转化的样品其中心及表面的微观结构不同.  相似文献   

2.
To investigate the osteogenesis of calcium phosphate ceramics,β-TCP ceramics were implanted into the condyle femur of rabbits.and tetracycline was injected termly.Specimens were host at 1,2,3,4,5,6months after implanted.The new bone formation and osteogenesis process were observed by the histomorphology,fluorescent microscope.SEM and EPMA.The results demonstrate that,osteogenesis is active,there are abundant osteoblasts. on the surface of osteoid,mesenchymal cell hyperplasia and incursion is found in materials after 1 month,After 2 months ,there is blood vessel formation and macrophage soakage within materials.Bone-island appears and connects by bone-bridge after 3 months.β-TCP ceramics degrade and are dispersed by new formation bone.Woven bone turns into bone lamella by rebuilding and calcification.The materials entirely change their original shape and combines with bone tissue as a whole after 6 months.The typical structure of spongy bone forms.It is confirmed that β-TCP is a degradable biocompatible artificial bone material which can incorporating in life.  相似文献   

3.
采用将多孔β-磷酸三钙(β-TCP)陶瓷支架材料直接在1.5SBF溶液中进行浸泡,和先在Na0H溶液中浸泡,再经过1.5SBF溶液浸泡处理的方法,分别对材料进行表面活化改性,提高材料的生物活性.并借助XRD,SEM,FT-IR等测试手段,分析活化处理前后材料的表面状况.结果表明经1.5SBF溶液浸泡后,材料表面生成类骨磷灰石层;而经NaOH溶液浸泡后,材料表面吸附羟基增多,改善其表面沉积类骨磷灰石层的能力,再经1.5SBF溶液浸泡处理后,陶瓷材料表面生成更多的类骨磷灰石.  相似文献   

4.
磷酸三钙涂层镁合金材料的体内降解及组织相容性研究   总被引:1,自引:1,他引:0  
探讨新型医用金属材料磷酸三钙(β-TCP)涂层镁合金的体内降解特性和生物活性,制备β-TCP涂层镁合金(β-TCP-Mg-Al-Zn)并植入大鼠股骨骨髓腔,扫描电镜观察体内植入材料的表面微观结构及材料表面能谱,分析材料表面钙(Ca)和磷(P)元素的变化规律。结果表明,材料体内植入1~4w时,(β-TCP)-Mg-Al-Zn材料表面有大量的粘附蛋白物质;材料体内植入8w时,(β-TCP)-Mg-Al-Zn材料表面Ca和P元素含量明显高于Mg-Al-Zn材料(P<0.05);体内植入12w时,Mg-Al-Zn材料降解约33%,而(β-TCP)-Mg-Al-Zn材料降解率为17%。β-TCP涂层可有效地延缓Mg-Al-Zn镁合金的体内降解,并使Mg-Al-Zn材料表面具有良好的生物活性。  相似文献   

5.
以β-磷酸三钙(βTCP)和壳聚糖(CS)为主要原料,采用反相乳液悬浮法制备出β-TCP/CS复合微球,并经1150℃条件下烧结,得到主要成分为卢.TCP的无机微球。X射线衍射分析得到经烧结后微球相成分主要为伊TCP,扫描电镜观察微球形貌表明微球成球性好、表面粗糙,激光粒度分析仪测定微球粒径主要分布在150-450μm。生物实验表明微球具有良好的生物活性。  相似文献   

6.
采用2种浆料结合三维凝胶叠层技术,成功制备了具有良好连通性的口.磷酸三钙支架,支架具有明显的叠层结构。采用固相含量为30%(体积分数,下同)的浆料制备坯体,1150℃下烧结2h得到的伊磷酸三钙支架,其垂直于叠层方向的抗压强度为(8.24±0.64)MPa,平行于叠层方向的抗压强度则为(25±3.4)MPa,具有一定的取向性。  相似文献   

7.
采用泡沫浆料与三维凝胶叠层技术,成功制备了具有合适孔径和良好连通性的多孔β-磷酸三钙支架.研究了不同烧结温度和浆料固相含量对支架材料性能的影响.在优选的工艺参数下,所得到的多孔支架气孔率为72.9%~76.0%,抗压强度为4.9MPa~5.8MPa,其性能可以满足骨组织工程的需要.  相似文献   

8.
以NaCl颗粒为致孔剂,采用"溶液浇铸-热压成型一颗粒沥滤"方法制备多孔β-磷酸三钙(β-TCP)/聚L-乳酸(PLLA)复合骨支架材料.研究了致孔剂用量、成型压强以及成型温度对复合材料孔隙率、体积密度及力学性能的影响;讨论了复合材料的孔隙率与其力学强度之间的关系以及细胞在支架材料上的增殖情况.扫描电镜(SEM)下,观察到β-TCP/PLLA复合材料有着开口的、均匀的及相互贯通的孔隙,孔径为100μm~400μm;排液法测得复合材料的孔隙率约为55%~65%;多孔复合材料的抗压强度(~8MPa)接近松质骨的抗压强度.研究表明致孔剂NaCl的用量为60%(质量分数)、NaCl颗粒粒径为200μm~450μm时,在6MPa成型压强及120℃成型温度下,制得的多孔复合材料的力学强度符合骨力学性能要求,并适合骨髓基质干细胞的黏附与生长.  相似文献   

9.
利用液相分相机理对β-磷酸三钙/骨胶复合材料造粒.以四水硝酸钙(Ca(NO3)2.4H2O)和磷酸三乙酯(C6H15O4P)为原料制备HAP溶胶和β-TCP溶胶.将β-TCP小球压成一定厚度的试片,烧结后首先放入β-TCP溶胶中真空浸渍,然后放入HAP溶胶中重复真空浸渍、热处理数次,在1000℃下烧结,制备β-TCP/HAP复合陶瓷.采用X射线衍射(XRD)和扫描电镜(SEM)分别对复合陶瓷片进行了物相和形貌分析.结果造粒出粒径在100μm ~800μm之间的小球.采用溶胶浸渍法成功地制备出β-TCP/HAP复合陶瓷.  相似文献   

10.
选择含有70%β-磷酸三钙加入聚乳酸中,致孔剂含量为70%(质量分数),制作成孔径为200~400βm的复合多孔支架材料,将其压成直径为5 mm、高为5 mm的圆柱体形状.将大鼠的骨髓间充质干细胞(BMSCs,Bone Mesenchymal Stem Cells)经过体外分离培养、传代诱导后,与多孔聚乳酸/β-磷酸三钙支架材料在培养板内共同培养1、3、5、7、10、14 d.采用扫描电镜观察、MTT法及ALP检测试剂盒等方法检测BMSCs在材料表面的粘附、增殖和分化能力.检测结果显示:BMSCs能在该支架材料表面早期粘附和增殖,在体外共同培养时BMSCs大量增殖后维持其碱性磷酸酶活性.此种方法制造的多孔聚乳酸/β-磷酸三钙复合支架材料有望成为组织工程骨支架材料.  相似文献   

11.
钙磷陶瓷表面形成的类骨磷灰石层对材料诱导新骨生成起非常重要的作用。利用体外模拟装置首次研究了新工艺制备的含CO3^2-的双相HA/β-TCP多孔陶瓷相组成对表面类骨磷灰石形成的影响。结果表明,具有不同相组成的该种陶瓷因CO3^2-的存在,导致类骨磷灰石晶体的形成时间有不同程度的提前。并且相组成在β-TCP含量较低时(HA/β-TCP之比为9/1),该陶瓷也能在较短的作用时间内形成类骨磷灰石晶体。此外还有缺钙羟基磷灰石晶体的形成。类骨磷灰石晶体的形成情况随β-TCP含量的增加而越来越好。且相组成以HA/β-TCP比值为6/4时类骨磷灰石的形成情况最好。相组成的优化有利于该陶瓷材料骨诱导性的提高,进而有利于骨缺损的快速修复。  相似文献   

12.
采用溶胶-凝胶法制备纯羟基磷灰石支架,并在其表面构造双相钙磷陶瓷膜层。并用SEM,FTIR,XRD对其进行表征,结果表明该法制得的材料为孔隙彼此贯通的多孔结构,孔径约为300~600gm,涂膜厚度约为20~50gm,孔壁上分布大量纳米级微孔。与对照材料HA相比,成骨细胞在4天后可以更多的粘附到该材料表面增殖分化(P〈0.05):体内埋植实验表明,经12周该材料具有更早的成骨效应和更多的成骨量(P〈0.05)新型复相Ca-P支架材料有利于骨组织修复。  相似文献   

13.
磷酸钙骨水泥的生物相容性   总被引:12,自引:0,他引:12  
磷酸钙(α-TCP/TTCP)复合骨水泥具有良好的水硬性能,与固化液按固液比为1.50g/mL拌和后,凝固时间可调,抗压强度达45.36MPa,其水化产物为羟基磷灰石(HAP)。通过体外模拟溶解实验表明,α-TCP/TTCP骨水泥具有一定的溶解性能,通过体外实验,动物实验,结合SEM和EPMA观察表明α-TCP/TTCP骨水泥不会产生全身或局部毒性反应,对肌肉无刺激,不致溶血,凝血,不引起炎症和排斥反应等,有利于骨组织长入并与骨组织紧密接触。α-TCP/TTCP骨水泥在动物体内可继续水化硬化,且随着植入时间的延长,材料与缩主骨完全融合在一起,α-TCP/TTCP骨水泥具有优良的生物相容性和生物活性,具有一定的降解性能和较好的成骨作用,适合于作为骨缺损的填充材料。  相似文献   

14.
目的研究多孔磷酸钙骨组织工程支架的表面微纳米化改性。方法通过双氧水发泡法制备多孔磷酸钙骨组织工程支架,利用水热法对材料进行微纳米化表面改性。通过扫描电镜观察材料的显微结构,通过X射线衍射仪分析测试材料改性层相成分。结果材料改性处理后,孔隙率为(63±8)%,大孔孔径为(310±30)μm。材料表面及内孔壁生成羟基磷灰石微纳米晶粒或晶须,晶须长20~40μm,直径为100~300 nm。结论多孔磷酸钙陶瓷材料的内外表面经水热法处理微纳米化表面改性后,材料性能得到提升。  相似文献   

15.
在磷酸钙骨水泥中分别掺杂骨微量元素镁(Mg)、铁(Fe)、锌(Zn)、锶(Sr),考察掺杂离子种类、含量对骨水泥固化时间、羟基磷灰石(HAp)结构、晶形以及骨水泥的抗压强度和孔隙率的影响。结果表明:掺杂不同离子将使骨水泥的固化时间有不同程度的延长;同时,影响水化产物羟基磷灰石的晶体形态。Mg2+掺杂使水化产物HAp晶粒细化,呈板状形态;Sr2+掺杂可获得纳米级晶须,且晶须相互缠绕,二者均有利于材料力学性能的提高。而掺杂Fe3+和Zn2+的骨水泥,其孔隙率明显提高,有利于体液循环和提高材料的生物降解性能。  相似文献   

16.
纳米磷酸氢锶的湿法合成   总被引:1,自引:0,他引:1  
采用湿法制备了厚30nm~80nm,宽140nm~200nm的六边形或椭圆形片状的纳米级磷酸氢锶(SrHPO4)粉末,用XRD对粉末组成、相变进行了测试,用TEM对颗粒形貌、尺寸进行了观测。研究了反应溶液pH值、反应时间、反应温度及浓度等参数对粉末组成、颗粒大小及形貌的影响。实验表明:在所研究的参数范围内,pH值是制备纳米级β-SrHPO4颗粒的主控参数,决定着最终产物的物相组成;反应温度与反应时间对晶粒形貌皆有一定影响,但对晶粒尺寸影响不大。  相似文献   

17.
采用体内骨组织工程的方法,探索骨诱导性磷酸钙陶瓷支架在不同非骨组织中构建骨移植物的可行性,并比较其差异,为体内骨组织工程的临床构建技术提供理论依据.方法为选取家犬的背部肌肉组织和脂肪组织为构建区,分别植入骨诱导性磷酸钙陶瓷支架以构建体内组织工程骨移植物.于术后4,6,12,24 w取样进行单光子计算机断层扫描(SPECT)、组织学检测,观察其构建过程,比较各个观测时间内,不同构建区的骨移植物中新骨组织的形成情况,评价不同非骨构建区域对体内骨组织骨移植物形成的影响.结果显示,骨诱导性磷酸钙陶瓷支架在肌肉组织和脂肪两处非骨组织中均可形成体内组织工程骨移植物.在构建初期,肌肉组中新骨形成的时间比脂肪组早,骨量也较多.但在构建24 w后,两组的新生骨量没有差异.较肌肉组织而言,在脂肪组织中构建体内组织工程骨移植物更有临床应用前景.  相似文献   

18.
采用化学沉积法在AZ31镁合金基体表面制备了钙磷涂层。利用X射线衍射仪和扫描电镜分析了涂层的相组成和形貌。通过电化学噪声技术原位研究了涂层的化学沉积过程及其在生理盐水中腐蚀行为。结果表明,经过3h的化学沉积可在AZ31基体上生成致密的二水合磷酸氢钙(DCPD)晶体涂层。涂层试样的腐蚀速率明显小于AZ31基体的腐蚀速率。AZ31基体在生理盐水中在较短的时间内会发生明显的局部腐蚀,腐蚀形态是以分散分布的多个腐蚀点的形式出现。涂层试样在生理盐水中经较长时间浸泡会发生局部腐蚀,腐蚀沿着打磨痕迹的方向发展,同时先前的局部腐蚀区域则停止发展。  相似文献   

19.
以高强可降解掺锶磷灰石骨水泥(Sr-HAC)为原料,以快速成型(RP)宏孔可控树脂为模板,合成了由掺锶磷灰石(Sr-HA)、掺锶磷酸钙(Sr-TCP)组成的新型双相掺锶磷酸钙(Sr-BCP)骨支架。结果表明,Sr-BCP骨支架相组成可根据Sr-HAC的(Ca+Sr)/P比率予以调控。骨支架宏孔高度连通,孔径400~550μm,且宏孔壁上具有丰富的微孔(孔径2~5μm)。此外,骨支架宏孔参数可通过设计不同孔结构的负模予以反向调控。宏孔百分数与相组成对Sr-BCP支架的抗压强度与降解速率有重要影响。与BCP骨支架相比,Sr-BCP骨支架具有更高的强度及更快的降解速率,一定程度上缓解了BCP陶瓷骨支架在力学和降解性能上难以兼顾的矛盾。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号