首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We report a time‐resolved fluorescence anisotropy study of ribosome‐bound nascent chains (RNCs) of calmodulin (CaM), a prototypical member of the EF‐hand family of calcium‐sensing proteins. As shown in numerous studies, in vitro protein refolding can differ substantially from biosynthetic protein folding, which takes place cotranslationally and depends on the rate of polypeptide chain elongation. A challenge in this respect is to characterize the adopted conformations of nascent chains before their release from the ribosome. CaM RNCs (full‐length, half‐length, and first EF‐hand only) were synthesized in vitro. All constructs contained a tetracysteine motif site‐specifically incorporated in the first N‐terminal helix; this motif is known to react with FlAsH, a biarsenic fluorescein derivative. As the dye is rotationally locked to this helix, we characterized the structural properties and folding states of polypeptide chains tethered to ribosomes and compared these with released chains. Importantly, we observed decelerated tumbling motions of ribosome‐tethered and partially folded nascent chains, compared to released chains. This indicates a pronounced interaction between nascent chains and the ribosome surface, and might reflect chaperone activity of the ribosome.  相似文献   

2.
Identifying protein “interactors” of drugs is of great importance to understand their mode of action and possible cross‐reactivity to off‐target protein binders. In this study, we profile proteins that bind to PF‐3717842, a high‐affinity phosphodiesterase‐5 (PDE5) inhibitor, by using a refined affinity pulldown approach with PF‐3717842 immobilized beads. By performing these pulldowns in rat testis tissue lysate, we strongly and specifically enriched for PDE5 and a few other PDEs. In addition to these expected affinity‐enriched proteins we also detect rodent‐specific phosphatidylethanolamine‐binding protein 2 (PEBP2), as a putative binder to the PDE5 inhibitor. By using recombinant forms of the related murine mPEBP2, mPEBP1 and human hPEBP1 (also known as Raf kinase inhibitor protein or RKIP) we confirm that they all can bind strongly to immobilized as well as soluble PF‐3717842. As the phosphatidylethanolamine‐binding proteins are involved in various important signal transduction pathways, the synthetic PDE5 inhibitor used here might form a platform to synthesize enhanced binders/inhibitors of the family of PEBP proteins. Our approach shows how chemical proteomics might be used to profile the biochemical space (interactome) of small molecule inhibitors.  相似文献   

3.
Energy‐coupling factor (ECF) transporters are membrane‐protein complexes that mediate vitamin uptake in prokaryotes. They bind the substrate through the action of a specific integral membrane subunit (S‐component) and power transport by hydrolysis of ATP in the three‐subunit ECF module. Here, we have studied the binding of thiamine derivatives to ThiT, a thiamine‐specific S‐component. We designed and synthesized derivatives of thiamine that bind to ThiT with high affinity; this allowed us to evaluate the contribution of the functional groups to the binding affinity. We determined six crystal structures of ThiT in complex with our derivatives. The structure of the substrate‐binding site in ThiT remains almost unchanged despite substantial differences in affinity. This work indicates that the structural organization of the binding site is robust and suggests that substrate release, which is required for transport, requires additional changes in conformation in ThiT that might be imposed by the ECF module.  相似文献   

4.
Mannostatin A is a potent inhibitor of the mannose‐trimming enzyme, Golgi α‐mannosidase II (GMII), which acts late in the N‐glycan processing pathway. Inhibition of this enzyme provides a route to blocking the transformation‐associated changes in cancer cell surface oligosaccharide structures. Here, we report on the synthesis of new Mannostatin derivatives and analyze their binding in the active site of Drosophila GMII by X‐ray crystallography. The results indicate that the interaction with the backbone carbonyl of Arg876 is crucial to the high potency of the inhibitor—an effect enhanced by the hydrophobic interaction between the thiomethyl group and an aromatic pocket vicinal to the cleavage site. The various structures indicate that differences in the hydration of protein–ligand complexes are also important determinants of plasticity as well as selectivity of inhibitor binding.  相似文献   

5.
Affinity maturation of protein‐targeting peptides is generally accomplished by homo‐ or heterodimerization of known peptides. However, applying a heterodimerization approach is difficult because it is not clear a priori what length or type of linker is required for cooperative binding to a target. Thus, an efficient and simple affinity maturation method for converting low‐affinity peptides into high‐affinity peptides would clearly be advantageous for advancing peptide‐based therapeutics. Here, we describe the development of a novel affinity maturation method based on a robust β‐hairpin scaffold and combinatorial phage‐display technology. With this strategy, we were able to increase the affinity of existing peptides by more than four orders of magnitude. Taken together, our data demonstrate that this scaffold‐assisted approach is highly efficient and effective in generating high‐affinity peptides from their low‐affinity counterparts.  相似文献   

6.
P‐glycoprotein (P‐gp), a 170 kDa plasma membrane protein, is one of the most relevant ABC transporters involved in the development of multidrug resistance (MDR). Understanding its mechanism of transport as well as its interactions with various substrates are basic requirements for the development of adequate therapeutic approaches to overcome this kind of resistance against a broad spectrum of structurally unrelated cytostatic drugs. P‐gp modulators (activators) that exert various effects on the intracellular accumulation of distinct P‐gp substrates are useful tools for investigating the interactions between multiple drug binding sites of this transport protein. In this study, a series of 27 different imidazobenzothiazoles and imidazobenzimidazoles structurally related to the known P‐gp activators QB102 and QB11 was designed, and their modulating properties were investigated. Most of them were able to stimulate P‐gp‐mediated efflux of daunorubicin and rhodamine 123 in a concentration‐dependent manner, but some compounds also displayed weak inhibitory effects. Additionally, P‐gp‐mediated efflux of vinblastine and colchicine was inhibited by several compounds. Therefore, we concluded that the novel compounds bind to the H site of P‐gp and activate the efflux of specific substrates of the R site in a positive cooperative manner, whereas binding of H‐type substrates is inhibited competitively. This hypothesis is confirmed by the observation that the modulators do not influence hydrolysis of ATP or its affinity toward P‐gp.  相似文献   

7.
A novel affinity “tag–receptor” pair was developed as a generic platform for the purification of fusion proteins. The hexapeptide RKRKRK was selected as the affinity tag and fused to green fluorescent protein (GFP). The DNA fragments were designed, cloned in Pet‐21c expression vector and expressed in E. coli host as soluble protein. A solid‐phase combinatorial library based on the Ugi reaction was synthesized: 64 affinity ligands displaying complementary functionalities towards the designed tag. The library was screened by affinity chromatography in a 96‐well format for binding to the RKRKRK‐tagged GFP protein. Lead ligand A7C1 was selected for the purification of RKRKRK fusion proteins. The affinity pair RKRKRK‐tagged GFP with A7C1 emerged as a promising solution (Ka of 2.45×105 M ?1). The specificity of the ligand towards the tag was observed experimentally and theoretically through automated docking and molecular dynamics simulations.  相似文献   

8.
Nucleic acid architectures offer intriguing opportunities for the interrogation of structural properties of protein receptors. In this study, we performed a DNA‐programmed spatial screening to characterize two functionally distinct receptor systems: 1) structurally well‐defined Ricinus communis agglutinin (RCA120), and 2) rather ill‐defined assemblies of L‐selectin on nanoparticles and leukocytes. A robust synthesis route that allowed the attachment both of carbohydrate ligands—such as N‐acetyllactosamine (LacNAc), sialyl‐Lewis‐X (sLeX), and mannose—and of a DNA aptamer to PNAs was developed. A systematically assembled series of different PNA–DNA complexes served as multivalent scaffolds to control the spatial alignments of appended lectin ligands. The spatial screening of the binding sites of RCA120 was in agreement with the crystal structure analysis. The study revealed that two appropriately presented LacNAc ligands suffice to provide unprecedented RCA120 affinity (KD=4 μM ). In addition, a potential secondary binding site was identified. Less dramatic binding enhancements were obtained when the more flexible L‐selectin assemblies were probed. This study involved the bivalent display both of the weak‐affinity sLeX ligand and of a high‐affinity DNA aptamer. Bivalent presentation led to rather modest (sixfold or less) enhancements of binding when the self‐assemblies were targeted against L‐selectin on gold nanoparticles. Spatial screening of L‐selectin on the surfaces of leukocytes showed higher affinity enhancements (25‐fold). This and the distance–activity relationships indicated that leukocytes permit dense clustering of L‐selectin.  相似文献   

9.
Mutant huntingtin (m-HTT) proteins and calmodulin (CaM) co-localize in the cerebral cortex with significant effects on the intracellular calcium levels by altering the specific calcium-mediated signals. Furthermore, the mutant huntingtin proteins show great affinity for CaM that can lead to a further stabilization of the mutant huntingtin aggregates. In this context, the present study focuses on describing the interactions between CaM and two huntingtin mutants from a biophysical point of view, by using classical Molecular Dynamics techniques. The huntingtin models consist of a wild-type structure, one mutant with 45 glutamine residues and the second mutant with nine additional key-point mutations from glutamine residues into proline residues (9P(EM) model). Our docking scores and binding free energy calculations show higher binding affinities of all HTT models for the C-lobe end of the CaM protein. In terms of dynamic evolution, the 9P(EM) model triggered great structural changes into the CaM protein’s structure and shows the highest fluctuation rates due to its structural transitions at the helical level from α-helices to turns and random coils. Moreover, our proposed 9P(EM) model suggests much lower interaction energies when compared to the 45Qs-HTT mutant model, this finding being in good agreement with the 9P(EM)’s antagonistic effect hypothesis on highly toxic protein–protein interactions.  相似文献   

10.
11.
The protein parvulustat (Z‐2685) from Streptomyces parvulus comprises 78 amino acids and functions as a highly efficient α‐amylase inhibitor. Parvulustat shares 29.6 % overall amino acid sequence identity to the well‐known α‐amylase inhibitor tendamistat. Among the conserved residues are the two disulfide bridges (C9–C25, C43–C70) and the active‐site motif (W16, R17, Y18). Here, we report the high‐resolution NMR structure of parvulustat based on NOEs, J couplings, chemical shifts and hydrogen‐exchange data. In addition, we studied the dynamical properties of parvulustat by heteronuclear relaxation measurements. We compare the structure of parvulustat with the structure of tendamistat in terms of secondary structure elements, charges and hydrophobicity. The overall structural composition is very similar, but there are distinct differences including the active‐site region. These structural and dynamical differences indicate that for parvulustat an induced‐fit mechanism for binding to α‐amylase might take place, since the structure of tendamistat does not change upon binding to α‐amylase.  相似文献   

12.
We describe a new class of fluorescent reporter and its employment to visualize the biotin/avidin binding interaction. Derivatives of the azamacrocycle cyclam that contain a pendant naphthalimide dye are inherently fluorescent when zinc(II) is coordinated. Introducing a second pendant group—biotin—affords an unsymmetrical bis‐triazole‐scorpionand ligand that interacts specifically with avidin. This ligand has been assembled by using a one‐pot “double‐click” strategy and complexed with copper(II) and zinc(II). The zinc(II) complex is fluorescent, and its fluorescence output changes in the presence of avidin. Upon avidin binding, the fluorescence output is diminished by interaction with the protein, at [complex]/[avidin] ratios of up to 4:1. The observed change might arise from a specific quenching effect in the biotin binding pocket or from a binding‐induced change in the coordination geometry of the complex.  相似文献   

13.
14.
Kinase inhibitors are increasingly important in drug development. Because the majority of current inhibitors target the conserved ATP‐binding site, selectivity might become an important issue. This could be particularly problematic for the potential drug target protein kinase C (PKC), of which twelve isoforms with high homology exist in humans. A strategy to increase selectivity is to prepare bisubstrate‐based inhibitors that target the more selective peptide‐binding site in addition to the ATP‐binding site. In this paper a generally applicable, rapid methodology is presented to discover such bisubstrate‐based leads. Dynamic peptide microarrays were used to find peptide‐binding site inhibitors. These were linked with chemoselective click chemistry to an ATP‐binding site inhibitor, and this led to novel bisubstrate structures. The peptide microarrays were used to evaluate the resulting inhibitors. Thus, novel bisubstrate‐based inhibitors were obtained that were both more potent and selective compared to their constituent parts. The most promising inhibitor has nanomolar affinity and selectivity towards PKCθ amongst three isozymes.  相似文献   

15.
A computationally designed, allosterically regulated catalyst (CaM M144H) produced by substituting a single residue in calmodulin, a non‐enzymatic protein, is capable of efficient and site selective post‐translational acylation of lysines in peptides with highly diverse sequences. Calmodulin′s binding partners are involved in regulating a large number of cellular processes; this new chemical‐biology tool will help to identify them and provide structural insight into their interactions with calmodulin.  相似文献   

16.
β2‐Microglobulin (β2‐m) is a protein responsible for a severe complication of long‐term hemodialysis, known as dialysis‐related amyloidosis, in which initial β2‐m misfolding leads to amyloid fibril deposition, mainly in the skeletal tissue. Whereas much attention is paid to understanding the complex mechanism of amyloid formation, the evaluation of small molecules that may bind β2‐m and possibly inhibit the aggregation process is still largely unexplored mainly because the protein lacks a specific active site. Based on our previous findings, we selected a pilot set of sulfonated molecules that are known to either bind or not to the protein, including binders that are anti‐amyloidogenic. We show how a complementary approach, using high‐resolution mass spectrometry and in silico studies, can offer rapid and precise information on affinity, as well as insight into the structural requisites that favour or disfavour the inhibitory activity. Overall, this approach can be used for predictive purposes and for a rapid screening of fibrillogenesis inhibitors.  相似文献   

17.
Improving the binding affinity and/or stability of peptide ligands often requires testing of large numbers of variants to identify beneficial mutations. Herein we propose a type of mutation that promises a high success rate. In a bicyclic peptide inhibitor of the cancer‐related protease urokinase‐type plasminogen activator (uPA), we observed a glycine residue that has a positive ? dihedral angle when bound to the target. We hypothesized that replacing it with a D ‐amino acid, which favors positive ? angles, could enhance the binding affinity and/or proteolytic resistance. Mutation of this specific glycine to D ‐serine in the bicyclic peptide indeed improved inhibitory activity (1.75‐fold) and stability (fourfold). X‐ray‐structure analysis of the inhibitors in complex with uPA showed that the peptide backbone conformation was conserved. Analysis of known cyclic peptide ligands showed that glycine is one of the most frequent amino acids, and that glycines with positive ? angles are found in many protein‐bound peptides. These results suggest that the glycine‐to‐D ‐amino acid mutagenesis strategy could be broadly applied.  相似文献   

18.
A procedure based on semi‐empirical quantum mechanical (QM) calculations of interaction energy is proposed for the rapid screening of compound poses generated by high‐throughput docking. Small molecules (consisting of 2–10 atoms and termed “probes”) are overlapped with polar groups in the binding site of the protein target. The interaction energy values between each compound pose and the probes, calculated by a semi‐empirical Hamiltonian, are used as filters. The QM probe method does not require fixed partial charges and takes into account polarization and charge‐transfer effects which are not captured by conventional force fields. The procedure is applied to screen ~100 million poses (of 2.7 million commercially available compounds) obtained by high‐throughput docking in the ATP binding site of the tyrosine kinase erythropoietin‐producing human hepatocellular carcinoma receptor B4 (EphB4). Three QM probes on the hinge region and one at the entrance pocket are employed to select for binding affinity, while a QM probe on the side chain of the so‐called gatekeeper residue (a hypervariable residue in the kinome) is used to enforce selectivity. The poses with favorable interactions with the five QM probes are filtered further for hydrophobic matching and low ligand strain. In this way, a single‐digit micromolar inhibitor of EphB4 with a relatively good selectivity profile is identified in a multimillion‐compound library upon experimental tests of only 23 molecules.  相似文献   

19.
Knowledge of the three‐dimensional structure of ligand binding sites in proteins provides valuable information for computer‐assisted drug design. We present a method for the automated extraction and classification of ligand binding site topologies, in which protein surface cavities are represented as branched frameworks. The procedure employs a growing neural gas approach for pocket topology assignment and pocket framework generation. We assessed the structural diversity of 623 known ligand binding site topologies based on framework cluster analysis. At a resolution of 5 Å only 23 structurally distinct topology groups were formed; this suggests an overall limited structural diversity of ligand‐accommodating protein cavities. Higher resolution allowed for identification of protein‐family specific pocket features. Pocket frameworks highlight potentially preferred modes of ligand–receptor interactions and will help facilitate the identification of druggable subpockets suitable for ligand affinity and selectivity optimization.  相似文献   

20.
α‐Galactosidase (αGal) is a lysosomal enzyme that hydrolyses the terminal α‐galactosyl moiety from glycosphingolipids. Mutations in the encoding genes for αGal lead to defective or misfolded enzyme, which results in substrate accumulation and subsequent organ dysfunction. The metabolic disease caused by a deficiency of human α‐galactosidase A is known as Fabry disease or Fabry–Anderson disease, and it belongs to a larger group known as lysosomal storage diseases. An effective treatment for Fabry disease has been developed by enzyme replacement therapy (ERT), which involves infusions of purified recombinant enzyme in order to increase enzyme levels and decrease the amounts of accumulated substrate. However, immunoreactivity and IgG antibody formation are major, therapy‐limiting, and eventually life‐threatening complications of ERT. The present study focused on the epitope determination of human α‐galactosidase A against its antibody formed. Here we report the identification of the epitope of human αGal(309–332) recognized by a human monoclonal anti‐αGal antibody, using a combination of proteolytic excision of the immobilized immune complex and surface plasmon resonance biosensing mass spectrometry. The epitope peptide, αGal(309–332), was synthesized by solid‐phase peptide synthesis. Determination of its affinity by surface plasmon resonance analysis revealed a high binding affinity for the antibody (KD=39×10?9 m ), which is nearly identical to that of the full‐length enzyme (KD=16×10?9 m ). The proteolytic excision affinity mass spectrometry method is shown here to be an efficient tool for epitope identification of an immunogenic lysosomal enzyme. Because the full‐length αGal and the antibody epitope showed similar binding affinities, this provides a basis for reversing immunogenicity upon ERT by: 1) treatment of patients with the epitope peptide to neutralize antibodies, or 2) removal of antibodies by apheresis, and thus significantly improving the response to ERT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号