首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trehalose glycolipids play an important role in the pathogenesis of Mycobacterium tuberculosis and are used as adjuvants for vaccines; however, much still remains unanswered about the mechanisms through which these glycolipids exert their immunomodulatory potential. Recently, the macrophage‐inducible C‐type lectin Mincle was determined to be the receptor for trehalose glycolipids, yet the role played by Mincle in glycolipid uptake is unknown. Accordingly, we developed several fluorescent trehalose glycolipid reporter systems that can be used to study the uptake of soluble trehalose glycolipids and glycolipid‐coated particles by macrophages. Our studies revealed that, although Mincle is essential for the activation of macrophages by trehalose glycolipids, the receptor does not play a role in the uptake of these glycolipids or of glycolipid‐coated particles.  相似文献   

2.
3.
Macrophage apoptosis, a key process in atherogenesis, is regulated by oxidation products, including hydroxyoctadecadienoic acids (HODEs). These stable oxidation products of linoleic acid (LA) are abundant in atherosclerotic plaque and activate PPARγ and GPR132. We investigated the mechanisms through which HODEs regulate apoptosis. The effect of HODEs on THP‐1 monocytes and adherent THP‐1 cells were compared with other C18 fatty acids, LA and α‐linolenic acid (ALA). The number of cells was reduced within 24 hours following treatment with 9‐HODE (p < 0.01, 30 μM) and 13 HODE (p < 0.01, 30 μM), and the equivalent cell viability was also decreased (p < 0.001). Both 9‐HODE and 13‐HODE (but not LA or ALA) markedly increased caspase‐3/7 activity (p < 0.001) in both monocytes and adherent THP‐1 cells, with 9‐HODE the more potent. In addition, 9‐HODE and 13‐HODE both increased Annexin‐V labelling of cells (p < 0.001). There was no effect of LA, ALA, or the PPARγ agonist rosiglitazone (1μM), but the effect of HODEs was replicated with apoptosis‐inducer camptothecin (10μM). Only 9‐HODE increased DNA fragmentation. The pro‐apoptotic effect of HODEs was blocked by the caspase inhibitor DEVD‐CHO. The PPARγ antagonist T0070907 further increased apoptosis, suggestive of the PPARγ‐regulated apoptotic effects induced by 9‐HODE. The use of siRNA for GPR132 showed no evidence that the effect of HODEs was mediated through this receptor. 9‐HODE and 13‐HODE are potent—and specific—regulators of apoptosis in THP‐1 cells. Their action is PPARγ‐dependent and independent of GPR132. Further studies to identify the signalling pathways through which HODEs increase apoptosis in macrophages may reveal novel therapeutic targets for atherosclerosis.  相似文献   

4.
Dose‐associated effects of rosuvastatin on the metabolism of apolipoprotein (apo) B‐100 in triacylglycerol rich lipoprotein (TRL, d < 1.019 g/ml) and low density lipoprotein (LDL) and of apoA‐I in high density lipoprotein (HDL) were assessed in subjects with combined hyperlipidemia. Our primary hypothesis was that maximal dose rosuvastatin would decrease the apoB‐100 production rate (PR), as well as increase apoB‐100 fractional catabolic rate (FCR). Eight subjects received placebo, rosuvastatin 5 mg/day, and rosuvastatin 40 mg/day for 8 weeks each in sequential order. The kinetics of apoB‐100 in TRL and LDL and apoA‐I in HDL were determined at the end of each phase using stable isotope methodology, gas chromatography‐mass spectrometry, and multicompartmental modeling. Rosuvastatin at 5 and 40 mg/day decreased LDL cholesterol by 44 and 54 % (both P < 0.0001), triacylglycerol by 14 % (ns) and 35 % (P < 0.01), apoB by 30 and 36 % (both P < 0.0001), respectively, and had no significant effects on HDL cholesterol or apoA‐I levels. Significant decreases in plasma markers of cholesterol synthesis and increases in cholesterol absorption markers were observed. Rosuvastatin 5 and 40 mg/day increased TRL apoB‐100 FCR by 36 and 46 % (both ns) and LDL apoB‐100 by 63 and 102 % (both P < 0.05), respectively. HDL apoA‐I PR increased with low dose rosuvastatin (12 %, P < 0.05) but not with maximal dose rosuvastatin. Neither rosuvastatin dose altered apoB‐100 PR or HDL apoA‐I FCR. Our data indicate that maximal dose rosuvastatin treatment in subjects with combined hyperlipidemia resulted in significant increases in the catabolism of LDL apoB‐100, with no significant effects on apoB‐100 production or HDL apoA‐I kinetics.  相似文献   

5.
Artificial synapses for femtomolar detection : Amperometry at platinized carbon fibre electrodes has been used to unravel the complexity of β‐lapachone's effects on cellular oxidative stress. α‐Lapachone, the pharmacologically inactive para‐quinone isomer, did not display such characteristics, but over longer incubation periods both quinones induced apoptosis. The observed effects were interpreted in terms of two mechanisms involving opposite reactivities of quinones in living cells.

  相似文献   


6.
Diabetic nephropathy (DN) is characterized by albuminuria, loss of renal function, renal fibrosis and infiltration of macrophages originating from peripheral monocytes inside kidneys. DN is also associated with intrarenal overactivation of the renin–angiotensin system (RAS), an enzymatic cascade which is expressed and controlled at the cell and/or tissue levels. All members of the RAS are present in the kidneys and most of them are also expressed in monocytes/macrophages. This review focuses on the control of monocyte recruitment and the modulation of macrophage polarization by the RAS in the context of DN. The local RAS favors the adhesion of monocytes on renal endothelial cells and increases the production of monocyte chemotactic protein-1 and of osteopontin in tubular cells, driving monocytes into the kidneys. There, proinflammatory cytokines and the RAS promote the differentiation of macrophages into the M1 proinflammatory phenotype, largely contributing to renal lesions of DN. Finally, resolution of the inflammatory process is associated with a phenotype switch of macrophages into the M2 anti-inflammatory subset, which protects against DN. The pharmacologic interruption of the RAS reduces albuminuria, improves the trajectory of the renal function, decreases macrophage infiltration in the kidneys and promotes the switch of the macrophage phenotype from M1 to M2.  相似文献   

7.
C. Yang  Y. Duan 《化学工程与技术》2013,36(11):1907-1914
The domain coverage method (DCM) is proposed to establish a computational fluid dynamics‐discrete element method (CFD‐DEM) model based on irregular mesh. The gas field was solved by Fluent software and the DEM model was coupled with Fluent software by user‐defined functions. Gas turbulent viscosity was calculated by the coupled k‐? two‐equation model and the soft‐sphere collision model was used to get particle contact force. The CFD‐DEM model based on irregular mesh was firstly verified to be reasonable by comparing the simulated injected bubble with that simulated by Bokkers et al. The solid exchange behavior was studied numerically in a 2D dual‐leg fluidized bed (DL‐FB). The simulation results were compared with experimental results and proved that the CFD‐DEM model is established successfully based on the efficient DCM. The DEM model is expanded to be used on irregular mesh in fluidized beds with complex geometries.  相似文献   

8.
Friedreich’s ataxia (FRDA) is a comparatively rare autosomal recessive neurological disorder primarily caused by the homozygous expansion of a GAA trinucleotide repeat in intron 1 of the FXN gene. The repeat expansion causes gene silencing that results in deficiency of the frataxin protein leading to mitochondrial dysfunction, oxidative stress and cell death. The GAA repeat tract in some cases may be impure with sequence variations called interruptions. It has previously been observed that large interruptions of the GAA repeat tract, determined by abnormal MboII digestion, are very rare. Here we have used triplet repeat primed PCR (TP PCR) assays to identify small interruptions at the 5′ and 3′ ends of the GAA repeat tract through alterations in the electropherogram trace signal. We found that contrary to large interruptions, small interruptions are more common, with 3′ interruptions being most frequent. Based on detection of interruptions by TP PCR assay, the patient cohort (n = 101) was stratified into four groups: 5′ interruption, 3′ interruption, both 5′ and 3′ interruptions or lacking interruption. Those patients with 3′ interruptions were associated with shorter GAA1 repeat tracts and later ages at disease onset. The age at disease onset was modelled by a group-specific exponential decay model. Based on this modelling, a 3′ interruption is predicted to delay disease onset by approximately 9 years relative to those lacking 5′ and 3′ interruptions. This highlights the key role of interruptions at the 3′ end of the GAA repeat tract in modulating the disease phenotype and its impact on prognosis for the patient.  相似文献   

9.
S‐adenosyl methionine (SAM) is a universal biological cofactor that is found in all branches of life where it plays a critical role in the transfer of methyl groups to various biomolecules, including DNA, proteins and small‐molecule secondary metabolites. The methylation process thus has important implications in various disease processes and applications in industrial chemical processing. This methyl transfer is catalysed by SAM‐dependent methyltransferases (MTases), which are by far the largest groups of SAM‐dependent enzymes. A significant amount is now known regarding the structural biology and enzymology of these enzymes, and, consequently, there is now significant scope for the development of new MTases and SAM analogues for applications from biomolecular imaging to biocatalytic industrial processes. This review will focus on current efforts in the manipulation of class I and V SAM‐dependent MTases and the use of synthetic SAM analogues, which together offer the best prospects for rational redesign towards biotechnological applications. Firstly, metabolic engineering of organisms incorporating small‐molecule MTases is discussed; this can be applied in a variety of areas from the industrial bioprocessing of flavourants and antibiotics to frontier research in biofuel production and bioremediation. Secondly, the application of MTases in combination with SAM analogues is reviewed; this allows the tagging of proteins and oligonucleotides with moieties other than the methyl group. Such tagging allows the isolation of the tagged biomolecule and aids its visualisation by a range of analytical methods. The review then summarises the potential advantages of MTase‐mediated chemistry and offers some future perspectives on downstream applications.  相似文献   

10.
The hydrodynamic characteristics and heterogeneous structures in an airlift loop reactor (ALR) are analyzed by a computational fluid dynamics (CFD) approach. Based on the two‐fluid model, a modified cluster structure‐dependent (CSD) drag model under consideration of the cluster effects is applied to the prediction of the non‐uniform flow structure in the ALR. In comparison with experimental data and the traditional drag model, the present model enables a better prediction. The distributions of the local granular temperature in different regions of the ALR are indicated. The granular temperature in the particle diffluence region was found to be higher than that in the draft tube and annular zones.  相似文献   

11.
We propose a testing procedure based on the Wilcoxon two‐sample test statistic in order to test for change‐points in the mean of long‐range dependent data. We show that the corresponding self‐normalized test statistic converges in distribution to a non‐degenerate limit under the hypothesis that no change occurred and that it diverges to infinity under the alternative of a change‐point with constant height. Furthermore, we derive the asymptotic distribution of the self‐normalized Wilcoxon test statistic under local alternatives, that is, under the assumption that the height of the level shift decreases as the sample size increases. Regarding the finite sample performance, simulation results confirm that the self‐normalized Wilcoxon test yields a consistent discrimination between hypothesis and alternative and that its empirical size is already close to the significance level for moderate sample sizes.  相似文献   

12.
MenD, or (1R,2S,5S,6S)‐2‐succinyl‐5‐enolpyruvyl‐6‐hydroxycyclohex‐3‐ene‐1‐carboxylate (SEPHCHC) synthase, uses a thiamine diphosphate (ThDP)‐dependent tetrahedral Breslow intermediate rather than a canonical enamine for catalysis in the biosynthesis of vitamin K. By real‐time monitoring of the cofactor chemical state with circular dichroism spectroscopy, we found that a new post‐decarboxylation intermediate was formed from a multistep process that was rate limited by binding of the α‐ketoglutarate substrate before it quickly relaxed to the characterized tetrahedral Breslow intermediate. In addition, the chemical steps leading to the reactive post‐decarboxylation intermediates were not affected by the electrophilic substrate, isochorismate, whereas release of the product was found to limit the whole catalytic process. Moreover, these intermediates are likely kinetically stabilized owing to the low biological availability of isochorismate under physiological conditions, in contrast to the tight coupling of enamine formation with binding of the electrophilic acceptor in some other ThDP‐dependent enzymes. Together with the unusual tetrahedral structure of the intermediates, these findings strongly support a new ThDP‐dependent catalytic mode distinct from canonical enamine chemistry.  相似文献   

13.
Conversion of spider silk proteins from soluble dope to insoluble fibers involves pH‐dependent dimerization of the N‐terminal domain (NT). This conversion is tightly regulated to prevent premature precipitation and enable rapid silk formation at the end of the duct. Three glutamic acid residues that mediate this process in the NT from Euprosthenops australis major ampullate spidroin 1 are well conserved among spidroins. However, NTs of minor ampullate spidroins from several species, including Araneus ventricosus (AvMiSp NT), lack one of the glutamic acids. Here we investigate the pH‐dependent structural changes of AvMiSp NT, revealing that it uses the same mechanism but involves a non‐conserved glutamic acid residue instead. Homology modeling of the structures of other MiSp NTs suggests that these harbor different compensatory residues. This indicates that, despite sequence variations, the molecular mechanism underlying pH‐dependent dimerization of NT is conserved among different silk types.  相似文献   

14.
In cellular signal transduction, scaffold proteins provide binding sites to organize signaling proteins into supramolecular complexes and act as nodes in the signaling network. Furthermore, multivalent interactions between the scaffold and other signaling proteins contribute to the formation of protein microclusters. Such microclusters are prominent in early T cell signaling. Here, we explored the minimal structural requirement for a scaffold protein by coupling multiple copies of a proline‐rich peptide corresponding to an interaction motif for the SH3 domain of the adaptor protein GADS to an N‐(2‐hydroxypropyl)methacrylamide polymer backbone. When added to GADS‐containing cell lysates, these scaffolds (but not individual peptides) promoted the binding of GADS to peptide microarrays. This can be explained by the cross‐linking of GADS into larger complexes. Furthermore, following import into Jurkat T cell leukemia cells, this synthetic scaffold enhanced the formation of microclusters of signaling proteins.  相似文献   

15.
According to the literature, the autoantigen La is involved in Cap-independent translation. It was proposed that one prerequisite for this function is the formation of a protein dimer. However, structural analyses argue against La protein dimers. Noteworthy to mention, these structural analyses were performed under reducing conditions. Here we describe that La protein can undergo redox-dependent structural changes. The oxidized form of La protein can form dimers, oligomers and even polymers stabilized by disulfide bridges. The primary sequence of La protein contains three cysteine residues. Only after mutation of all three cysteine residues to alanine La protein becomes insensitive to oxidation, indicating that all three cysteines are involved in redox-dependent structural changes. Biophysical analyses of the secondary structure of La protein support the redox-dependent conformational changes. Moreover, we identified monoclonal anti-La antibodies (anti-La mAbs) that react with either the reduced or oxidized form of La protein. Differential reactivities to the reduced and oxidized form of La protein were also found in anti-La sera of autoimmune patients.  相似文献   

16.
A novel biocatalytic process for production of L ‐homoalanine from L ‐threonine has been developed using coupled enzyme reactions consisting of a threonine deaminase (TD) and an ω‐transaminase (ω‐TA). TD catalyzes the dehydration/deamination of L ‐threonine, leading to the generation of 2‐oxobutyrate which is asymmetrically converted to L ‐homoalanine via transamination with benzylamine executed by ω‐TA. To make up the coupled reaction system, we cloned and overexpressed a TD from Escherichia coli and an (S)‐specific ω‐TA from Paracoccus denitrificans. In the coupled reactions, L ‐threonine serves as a precursor of 2‐oxobutyrate for the ω‐TA reaction, eliminating the need for employing the expensive oxo acid as a starting reactant. In contrast to α‐transaminase reactions in which use of amino acids as an exclusive amino donor limits complete conversion, amines are exploited in the ω‐TA reaction and thus maximum conversion could reach 100%. The ω‐TA‐only reaction with 10 mM 2‐oxobutyrate and 20 mM benzylamine resulted in 94% yield of optically pure L ‐homoalanine (ee>99%). However, the ω‐TA‐only reaction did not produce any detectable amount of L ‐homoalanine from 10 mM L ‐threonine and 20 mM benzylamine, whereas the ω‐TA reaction coupled with TD led to 91% conversion of L ‐threonine to L ‐homoalanine.  相似文献   

17.
Aptameric sensors can bind molecular targets and produce output signals, a phenomenon that is used in bioassays. In some cases, it is important to distinguish between monomeric and oligomeric forms of a target. Here, we propose a strategy to convert a monomer/oligomer‐nonselective sensor into an oligomer‐selective sensor. We designed an aptazyme that produced a high fluorescent output in the presence of oligomeric α‐synuclein (a molecular marker of Parkinson's disease) but not its monomeric form. The strategy is potentially useful in the design of point‐of‐care tests for the diagnosis of neurodegenerative diseases.  相似文献   

18.
The acetic acid bacterium Gluconobacter oxydans has a high potential for oxidoreductases with a variety of different catalytic abilities. One putative oxidoreductase gene codes for an enzyme with a high similarity to the NADP+‐dependent glycerol dehydrogenase (GlyDH) from Hypocrea jecorina. Due to this homology, the GlyDH (Gox1615) has been cloned, over‐expressed in Escherichia coli, purified and characterised. Gox1615 shows an apparent native molecular mass of 39 kDa, which corresponds well to the mass of 37.213 kDa calculated from the primary structure. From HPLC measurements, a monomeric structure can be deduced. Kinetic parameters and the dependence of the activity on temperature and pH were determined. The enzyme shows a broad substrate spectrum in the reduction of different aliphatic, branched and aromatic aldehydes. Additionally, the enzyme has been shown to oxidize a variety of different alcohols. The highest activities were observed for the conversion of D ‐glyceraldehyde in the reductive and L ‐arabitol in the oxidative direction. Since high enantioselectivities were observed for the reduction of glyceraldehyde, the kinetic resolution of glyceraldehyde was investigated and found to yield enantiopure L ‐glyceraldehyde on preparative scale.  相似文献   

19.
20.
Nanoporous copper (CuNPore) catalysts with tunable nanoporosity were fabricated from Cu30Mn70 alloy by controlling the de‐alloying temperature under free corrosion conditions. The tunable nanoporosity of CuNPore led to a significant enhancement of catalytic activity in click chemistry without using any supports and bases. Characterization of CuNPore surface, high reusability, leaching experiment, and formation of nanostructured copper acetylide revealed that the click reaction occurred at the catalyst surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号