首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 128 毫秒
1.
The hydride transfer reactions from simple silanes to carbenium ions are studied by ab initio calculations. The simplest reaction, H4Si + CH3+ → H3Si+ + CH4, is also studied with inclusion of the solvent effect (with the SCRF method) in the ab initio scheme. Under all conditions the preferred mechanism is the synchronous hydride transfer (SHT), which is barrierless in the gas phase but possesses small barriers in solution. The mechanistic alternative involving a rate-determining single electron transfer (SET) step followed by H-atom abstraction is found to be of very high energy. Modelling of the primary isotope effect for the SHT process of H3SiH(D) + CH3* → H3Si+ + H3CH(D) shows that the primary isotope effect is small, between ca. 1.1 and 2.7, for the entire relevant range of Si—H(D) distances (1.5–2.3 Å). Furthermore, the pattern of the computed primary isotope effect shows it to be an insensitive probe of the SHT mechanism. The curve-crossing method is used to model the mechanistic dichotomy. It is shown that the reaction profiles for both SHT and SET arise from an avoided crossing between the ground state and a charge transfer state of the R3SiH//R′3C+ reactant pair. Thus, in the SHT mechanism a single electron switches sites in synchronicity with bond reorganization, while in SET the electron switch precedes the bond coupling. This avoided bond coupling is the foremost disadvantage of the SET mechanism. The common origin of the avoided crossing elucidates the reason why SHT exhibits characteristics of an electron transfer process without actually being a SET process.  相似文献   

2.
The NAD+ subunit 1-methyl-3-carbamoyl pyridinium cation (or 1-methyl nicotinamide cation, MNA+) forms an ion pair with BH3CN which shows a new absorption (λmax=453 nm) which is assigned to an outer-sphere charge transfer (OSCT) transition from BH3CN to MNA+. At r.t. this ion pair is not stable and undergoes a hydride transfer from BH3CN to MNA+ with the formation of MNAH. At −77°C this ion pair is persistent but the hydride transfer occurs as a photoreaction which is induced by OSCT excitation.  相似文献   

3.
Aminoacyl‐tRNA synthetases (aaRSs) play essential roles in protein synthesis. As a member of the aaRS family, the tyrosyl‐tRNA synthetase (TyrRS) in Escherichia coli has been shown in proteomic studies to be acetylated at multiple lysine residues. However, these putative acetylation targets have not yet been biochemically characterized. In this study, we applied a genetic‐code‐expansion strategy to site‐specifically incorporate N?‐acetyl‐l ‐lysine into selected positions of TyrRS for in vitro characterization. Enzyme assays demonstrated that acetylation at K85, K235, and K238 could impair the enzyme activity. In vitro deacetylation experiments showed that most acetylated lysine residues in TyrRS were sensitive to the E. coli deacetylase CobB but not YcgC. In vitro acetylation assays indicated that 25 members of the Gcn5‐related N‐acetyltransferase family in E. coli, including YfiQ, could not acetylate TyrRS efficiently, whereas TyrRS could be acetylated chemically by acetyl‐CoA or acetyl‐phosphate (AcP) only. Our in vitro characterization experiments indicated that lysine acetylation could be a possible mechanism for modulating aaRS enzyme activities, thus affecting translation.  相似文献   

4.
The IDH1R132H mutation in glioma results in the neoenzymatic function of IDH1, leading to the production of the oncometabolite 2-hydroxyglutarate (2-HG), alterations in energy metabolism and changes in the cellular redox household. Although shifts in the redox ratio NADPH/NADP+ were described, the consequences for the NAD+ synthesis pathways and potential therapeutic interventions were largely unexplored. Here, we describe the effects of heterozygous IDH1R132H on the redox system in a CRISPR/Cas edited glioblastoma model and compare them with IDH1 wild-type (IDH1wt) cells. Besides an increase in 2-HG and decrease in NADPH, we observed an increase in NAD+ in IDH1R132H glioblastoma cells. RT-qPCR analysis revealed the upregulation of the expression of the NAD+ synthesis enzyme nicotinamide phosphoribosyltransferase (NAMPT). Knockdown of NAMPT resulted in significantly reduced viability in IDH1R132H glioblastoma cells. Given this dependence of IDH1R132H cells on NAMPT expression, we explored the effects of the NAMPT inhibitors FK866, GMX1778 and GNE-617. Surprisingly, these agents were equally cytotoxic to IDH1R132H and IDH1wt cells. Altogether, our results indicate that targeting the NAD+ synthesis pathway is a promising therapeutic strategy in IDH mutant gliomas; however, the agent should be carefully considered since three small-molecule inhibitors of NAMPT tested in this study were not suitable for this purpose.  相似文献   

5.
A new technique of in situ doping of alkali metal (Li+, Na+, K+, Rb+, and Cs+) in Nb2O5 was showcased by the modified anodization of Nb foils at high frequency, negative‐to‐positive pulsed voltage. At the optimized dopant concentration and synthesis condition, the doped‐Nb2O5 shows twofold enhancement in photoelectrochemical water splitting efficiencies compared with the undoped Nb2O5 electrode, as a result of improved charge carrier density and enhanced surface charge transfer. © 2015 American Institute of Chemical Engineers AIChE J, 62: 352–358, 2016  相似文献   

6.
Bifidobacterium longum is a very important gram-positive non-pathogenic bacterium in the human gastrointestinal tract for keeping the digestive and immune system healthy. Isocitrate dehydrogenase (IDH) from B. longum (BlIDH), a novel member in Type II subfamily, was overexpressed, purified and biochemically characterized in detail. The active form of BlIDH was an 83-kDa homodimer. Kinetic analysis showed BlIDH was a NADP+-dependent IDH (NADP-IDH), with a 567- and 193-fold preference for NADP+ over NAD+ in the presence of Mg2+ and Mn2+, respectively. The maximal activity for BlIDH occurred at 60 °C (with Mn2+) and 65 °C (with Mg2+), and pH 7.5 (with Mn2+) and pH 8.0 (with Mg2+). Heat-inactivation profiles revealed that BlIDH retained 50% of maximal activity after incubation at 45 °C for 20 min with either Mn2+ or Mg2+. Furthermore, the coenzyme specificity of BlIDH can be completely reversed from NADP+ to NAD+ by a factor of 2387 by replacing six residues. This current work, the first report on the coenzyme specificity conversion of Type II NADP-IDHs, would provide better insight into the evolution of NADP+ use by the IDH family.  相似文献   

7.
The photoelectrolysis, in which redox compounds are electrolysed on a pair of photo-excitable electrodes by supplying photo—energy in place of electric energy, has been performed. The photo—excitable electrodes were prepared by coating a platinum plate with a thin layer of a chlorophyll—quinone composite. These electrodes were called chlorophyll electrodes. The chlorophyll electrode of chlorophyll—naphthoquinone composite worked as a cathode and that of chlorophyll—anthrahydroquinone composite as an anode when they were illuminated. The chlorophyll electrode of chlorophyll—naphthoquinone composite was characterized by an electrochemical behavior of p-type semiconductor electrode. Reduction of nicotinamide adenine dinucleotide (NAD+) was carried out on the chlorophyll electrode under illumination at various controlled electrode potentials. NAD was reduced at extremely noble electrode potentials are compared with the reductive potential of NAD+ to NADH. Electron transfer accompanied with the photoelectrochemical reactions is discussed.  相似文献   

8.
N‐carboxyethylation of chitosan by β‐halopropionic acids in the presence of various proton and halogen ion acceptors was investigated. It has been observed that carboxyethylation of chitosan in aqueous medium is accompanied by the by‐processes of hydrolysis and dehydrohalogenation of the β‐halopropionic acids yielding β‐hydroxypropionic acid, bis(2‐carboxyethyl) ether, and acrylic acid. Degree of carboxyethyl substitution (DS) of chitosan and the relative rates of the by‐processes varied significantly depending on the conditions used and nature of the proton or halogen ion acceptor. At carboxyethylation of chitosan with the alkaline β‐bromopropionates, the DS increased in the order Cs+ < Rb+ < K+ ~ Na+ < Li+. For alkaline earth salts BrCH2CH2COOM0.5 (M = Be2+, Mg2+, Ca2+, Sr2+, Ba2+), the highest DS was obtained with strontium and barium salts, which could be subsequently removed from the reaction mixture by precipitation as sulfates. Among the organic bases applied (tetrabutylammonium hydroxide, triethylamine, trimethylamine, pyridine, 4‐N,N‐dimethylaminopyridine, 2,6‐lutidine, and 1,5‐diazabicyclo[4.3.0] non‐5‐ene), the highest DS was obtained using a moderately strong base triethylamine. For the halogen acceptors (Pb2+, Ag+, Tl+), the stoichiometrically highest DS was achieved in a system comprising iodopropionic acid plus Tl+ and a comparable conversion rate was obtained using also a combination of chloropropionic acid and Ag+. A novel alternative preparative approach—gel‐state synthesis—was suggested that provides for the highest DS at the optimum reaction conditions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Cytosolic pH homeostasis is a precondition for the normal growth and stress responses in plants, and H+ flux across the plasma membrane is essential for cytoplasmic pH control. Hence, this review focuses on seven types of proteins that possess direct H+ transport activity, namely, H+-ATPase, NHX, CHX, AMT, NRT, PHT, and KT/HAK/KUP, to summarize their plasma-membrane-located family members, the effect of corresponding gene knockout and/or overexpression on cytosolic pH, the H+ transport pathway, and their functional regulation by the extracellular/cytosolic pH. In general, H+-ATPases mediate H+ extrusion, whereas most members of other six proteins mediate H+ influx, thus contributing to cytosolic pH homeostasis by directly modulating H+ flux across the plasma membrane. The fact that some AMTs/NRTs mediate H+-coupled substrate influx, whereas other intra-family members facilitate H+-uncoupled substrate transport, demonstrates that not all plasma membrane transporters possess H+-coupled substrate transport mechanisms, and using the transport mechanism of a protein to represent the case of the entire family is not suitable. The transport activity of these proteins is regulated by extracellular and/or cytosolic pH, with different structural bases for H+ transfer among these seven types of proteins. Notably, intra-family members possess distinct pH regulatory characterization and underlying residues for H+ transfer. This review is anticipated to facilitate the understanding of the molecular basis for cytosolic pH homeostasis. Despite this progress, the strategy of their cooperation for cytosolic pH homeostasis needs further investigation.  相似文献   

10.
The development of photonic materials for efficient energy conversion and high‐power solid‐state lasers is currently pursued given the wide range of applicable technologies and the possibility to help meet global energy demands in laser fusion power plants. In this work, Cu+ ions successfully incorporated in aluminophosphate glass are recognized as near‐ultraviolet (UV) sensitizers of Nd3+ ions resulting in remarkable near‐infrared (IR) 4F3/24I11/2 emission at 1.06 μm. Optical absorption, solid‐state 31P nuclear magnetic resonance, Raman, and photoluminescence spectroscopies characterizations are employed and assessment methods for material optical and structural properties are proposed. The spectroscopic data indicates an efficient (>50%) nonradiative energy transfer where the Cu+ ions first absorb photons broadly around 360 nm, and subsequently transfer the energy from the Stokes‐shifted emitting states to resonant Nd3+ energy levels. Then, the Nd3+ electronic excited states decay and the upper lasing state 4F3/2 is populated, leading to enhanced near‐IR emission. It is suggested that the physico‐chemically robust Cu+/Nd3+ codoped aluminophosphate glass is a suitable candidate as solid‐state laser material with enhanced pump range in the near‐UV part of the spectrum and for solar spectral conversion in photovoltaic cells.  相似文献   

11.
By evolving the N‐terminal domain of Methanosarcina mazei pyrrolysyl‐tRNA synthetase (PylRS) that directly interacts with tRNAPyl, a mutant clone displaying improved amber‐suppression efficiency for the genetic incorporation of N?‐(tert‐butoxycarbonyl)‐l ‐lysine threefold more than the wild type was identified. The identified mutations were R19H/H29R/T122S. Direct transfer of these mutations to two other PylRS mutants that were previously evolved for the genetic incorporation of N?‐acetyl‐l ‐lysine and N?‐(4‐azidobenzoxycarbonyl)‐l ‐δ,?‐dehydrolysine also improved the incorporation efficiency of these two noncanonical amino acids. As the three identified mutations were found in the N‐terminal domain of PylRS that was separated from its catalytic domain for charging tRNAPyl with a noncanonical amino acid, they could potentially be introduced to all other PylRS mutants to improve the incorporation efficiency of their corresponding noncanonical amino acids. Therefore, it represents a general strategy to optimize the pyrrolysine incorporation system‐based noncanonical amino‐acid mutagenesis.  相似文献   

12.
Analysing the electrochemical impedance diagrams plotted in a large frequency range (10?3 Hz104 Hz) enables to complete and support the dissolution—passivation scheme of titanium elaborated from steady state measurements.The analysis of the Rt. I product (charge transfer resistance by stationary current) reveals the presence of two active dissolution paths in tervalen titanium, one of which depends on the presence of the hydride (TiH2). Moreover it confirms the participation of the tetravalent oxide TiO2 in the establishment of the stable passivity. A complete reaction model specifying the chemical nature of all the intermediates and final products is proposed.  相似文献   

13.
Nitroxyl (HNO), a reduced form of the important gasotransmitter nitric oxide, exhibits its own unique biological activity. A possible biological pathway of HNO formation is the S‐thiolation reaction between thiols and S‐nitrosothiols (RSNOs). Our density functional theory (DFT) calculations suggested that S‐thiolation proceeds through a proton transfer from the thiol to the RSNO nitrogen atom, which increases electrophilicity of the RSNO sulfur, followed by nucleophilic attack by thiol, yielding a charge‐separated zwitterionic intermediate structure RSS+(R)N(H)O? ( Zi ), which decomposes to yield HNO and disulfide RSSR. In the gas phase, the proton transfer and the S?S bond formation are asynchronous, resulting in a high activation barrier (>40 kcal mol?1), making the reaction infeasible. However, the barrier can decrease below the S?N bond dissociation energy in RSNOs (≈30 kcal mol?1) upon transition into an aqueous environment that stabilizes Zi and provides a proton shuttle to synchronize the proton transfer and the S?S bond formation. These mechanistic features suggest that S‐thiolation can easily lend itself to enzymatic catalysis and thus can be a possible route of endogenous HNO production.  相似文献   

14.
Charge compensation was the effective methods to enhance the luminescence properties of phosphors. In this paper, novel single‐phased orange light emitting Sr2Mg3P4O15:Eu3+ phosphors were prepared by solid state method. The phase purity and luminous characteristics were examined in detail. Meanwhile, three kinds of charge compensation methods (co‐doping the alkali metal R+ (R+ = Li, Na, and K), substituting Si4+ for P5+ and self‐compensation) were employed to solve the charge imbalance problem between Sr2+ and Eu3+. The results showed that emission intensity of Eu3+ was improved by 1.43 (Li+), 1.58 (Na+), 1.53 (K+), 1.61 (Si4+), and 1.30 (self) times than that of Sr1.6Mg3P4O15:0.40Eu3+, respectively, and there was no change in the emitting color simultaneously. Furthermore, as the temperature reached at 423 K, the emission intensity increased from 41.67% of Sr1.6Mg3P4O15:0.40Eu3+ to 55.69% (Li+), 61.62% (Na+), 58.98% (K+), 71.15% (Si4+), and 80.59% (self) of that at room temperature. The reasons of those phenomena were the reduction in ion vacancies caused by charge imbalance through the charge compensation process. The specific mechanisms were elaborated in detail. Overall, this research validated that the charge compensation strategies could be severed as the key method to improve the luminescence properties, especially the thermal stability of phosphor.  相似文献   

15.
In living cells, compartmentalized or membrane‐associated enzymes are often assembled into large networks to cooperatively catalyze cascade reaction pathways essential for cellular metabolism. Here, we report the assembly of an artificial 2D enzyme network of two cascade enzymes—glucose‐6‐phosphate dehydrogenase (G6PDH) and lactate dehydrogenase (LDH)—on a wireframe DNA origami template. Swinging arms were used to facilitate the transport of the redox intermediate of NAD+/NADH between enzyme pairs on the array. The assemblies of 2D enzyme networks were characterized by gel electrophoresis and visualized by atomic force microscopy (AFM). The spatial arrangements of multiple enzyme pairs were optimized to facilitate efficient substrate channeling by exploiting the programmability of DNA origami to manipulate the key parameters of swinging arm length and stoichiometry. Compared with a single enzyme pair, the 2D organized enzyme systems exhibited higher reaction efficiency due to the promoted transfer of intermediates within the network.  相似文献   

16.
The paper shows the applicability of IR spectroscopy to investigate the ionization of sorbates in the resin phase. Amino acids sorbed by sulphuric polystyrene-divinylbenzene cation-exchange resin were used as example. Charge changes in the resin phase accompanies sorption of amino acid ions. The average charge of the ions in the cation-exchanger phase is more positive than in the surrounding solution. Only the sorption of the most positively charged ions is not accompanied with recharging. The charge changing is the reason for ion-exchange sorption of amino acids by cation-exchange resins at high pH. A complete interpretation of the IR spectra for systems containing different lysine and tyrosine ions was done also. The quantitative estimation of the charge changing can be done through the comparison of the spectral lines intensity. The ratios Lys2+/Lys+ and Tyr+/Tyr± in the resin phase were calculated as an example.  相似文献   

17.
Iodine which is generally a non-conductor in non-polar solvents, conducts electricity in methanol, ethanol and water. The majority of the charge carriers in the solutions of charge-transfer complexes of methanol—iodine and ethanol—iodine are anion constituents (t25°C? are 0.739, 0.728 for 0.1 N solution of iodine in methanol and ethanol respectively) and for water—iodine it is cation constituents (t25°C+ is 0.905 for 0.0024 N iodine). The transport number of anion decreases with the increase in temperature whereas it increases with the increase in concentration at 25°C.  相似文献   

18.
Histone deacetylases regulate the acetylation levels of numerous proteins and play key roles in physiological processes and disease states. In addition to acetyl groups, deacetylases can remove other acyl modifications on lysines, the roles and regulation of which are far less understood. A peptide‐based fluorescent probe for single‐reagent, real‐time detection of deacetylase activity that can be readily adapted for probing broader lysine deacylation, including decrotonylation, is reported. Following cleavage of the lysine modification, the probe undergoes rapid intramolecular imine formation that results in marked optical changes, thus enabling convenient detection of deacylase activity with good statistical Z′ factors for both absorption and fluorescence modalities. The peptide‐based design offers broader isozyme scope than that of small‐molecule analogues, and is suitable for probing both metal‐ and nicotinamide adenine dinucleotide (NAD+)‐dependent deacetylases. With an effective sirtuin activity assay in hand, it is demonstrated that iron chelation by Sirtinol, a commonly employed sirtuin inhibitor, results in an enhancement in the inhibitory activity of the compound that may affect its performance in vivo.  相似文献   

19.
Adsorption on polarized Hg electrode of formate ions from aqueous solutions of pure HCOONa using differential capacity measurements was studied. Anion specific adsorption was indicated by the cathodic shift of potential of zero charge with increase in bulk-electrolyte activity. Variation of charge due to surface excess of sodium ions (Γ + Z+ F) and of charge due to specifically adsorbed formate ions (q1), with electrode charge (qM) indicated super-equivalent adsorption of formate ions at all positive charges and for all concentrations studied. Esin—Markov coefficient was found to be unreliable criterion of the occurence of specific adsorption. Logarithmic form of constant charge adsorption isotherms were found to be followed. The plots of φM ? 2vs q1 at constant qM were not linear and resembled those for F?, BF4? and CH3COO? ions; which is attributed to relatively weak specific adsorption of anions.  相似文献   

20.
In the present work, Zn2SnO4 nanoparticles were doped with silicon to improve their electrical and optical properties by the conventional solid‐state reaction method. The results showed that the minimum electrical resistivity of about 0.09 Ωcm was obtained for Zn2SnO4 nanoparticles with 3% Si doping. The decrease in the electrical resistivity can be attributed to the insertion of Si+4 atoms into the Zn+2 and/or Sn+4 sites and also the formation of more oxygen vacancies in the Zn2SnO4 lattice. The formation of the more oxygen vacancy defect states in Si‐doped Zn2SnO4 nanoparticles was verified by photoluminescence spectroscopy. The efficiency of a dye‐sensitized solar cell based on 3% Si‐doped Zn2SnO4 was significantly better, by about 81%, compared to that of a cell based on the undoped Zn2SnO4. The enhancement in the efficiency can be ascribed to the facilitation of electron transport throughout a photoelectrode due to increase in the charge carrier concentration which was caused by Si doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号