首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The stimulation of intestinal epithelial cell cyclooxygenase (COX) enzymes with inflammatory agents and the inhibition of COX-1 and COX-2 enzymes has the potential to increase understanding of the role of these enzymes in intestinal inflammation. The aim of this study was to determine the contributions of COX-1 and -2 to the production of specific prostanoids by unstimulated and stimulated intestinal epithelial cells. Cultured enterocytes were stimulated with lipopolysaccharide (LPS), interleukin-1 (IL-1)beta (IL-1 beta), and calcium ionophore (Ca Ion), with and without COX inhibitors. Valerylsalicylic acid (VSA) was employed as the COX-1 inhibitor, and SC-58125 and NS398 were used as the COX-2 inhibitors. Prostanoids were quantitated by Elisa assay. Western immunoblotting demonstrated the presence of constitutive COX-1 and inducible COX-2 enzyme. Unstimulated prostanoid formation was not decreased by the COX-1 inhibitor. All of the stimulants evaluated increased prostaglandin E2 (PGE2) production. Only Ca Ion stimulated prostaglandin D2 (PGD2) production while IL-1 beta, and Ca Ion, but not LPS, increased prostaglandin F2 alpha (PGF2 alpha) formation. Ca Ion-stimulated prostanoid formation was uniformly inhibited by COX-2, but not COX-1, inhibitors. IL-1 beta-stimulated PGE2 and PGE2 alpha formation was significantly decreased by both COX-1 and COX-2 inhibitors. VSA, in a dose-dependent manner, significantly decreased IL-1 beta-stimulated PGE2 and PGF2 alpha production. Unstimulated prostanoid formation was not dependent on constitutive COX-1 activity. The stimulation of intestinal epithelial cells by Ca Ion seemed to uniformly produce prostanoids through COX-2 activity. There was no uniform COX-1 or COX-2 pathway for PGE and PGF2 alpha formation stimulated by the inflammatory agents, suggesting that employing either a COX-1 or COX-2 inhibitor therapeutically will have varying effects on intestinal epithelial cells dependent on the prostanoid species and the inflammatory stimulus involved.  相似文献   

3.
Prostaglandin (PG) biosynthesis by cytokine stimulated normal adult human osteoblast-like (hOB) cells was evaluated by thin layer chromatography, high performance liquid chromatography, and specific immunoassays. PGE2 was the predominant PG formed under all incubation conditions tested. Control samples produced measurable amounts of PGE2, and the measured level of this metabolite increased by 22-fold (from 7 to 152 ng/ml) following a 20 h treatment with the combination of TGF beta and tumor necrosis factor-alpha(TNF). The production of 6-keto-PGF1 alpha (the stable metabolite of prostacyclin) and of PGF2 alpha were each increased by about five-fold (from about 0.5 to 2.5 ng/ml) in samples treated with the cytokines. Thus, TGF beta and TNF exerted a regulation of hOB cell PG biosynthesis that was principally directed towards an increased PGE2 biosynthesis, with lesser effects on the production of other PG metabolites. COX-2 mRNA levels were increased within 2 h of cytokine stimulation, reached a maximum at 6-12 h, and levels had appreciably diminished by 24 h after treatment. Both TGF beta and TNF could independently increase COX-2 mRNA levels and PG biosynthesis. However, the increased production of PGE2 resulting from TNF stimulation was blocked by the addition of an interleukin-1 beta (IL-1 beta) neutralizing antibody, suggesting that TNF regulation of hOB cell PG synthesis was secondary to its capacity to increase hOB cell IL-1 beta production. TGF beta regulation of PG production was not affected by the addition of the neutralizing antibody. These studies support the proposition that PGs can be important autocrine/paracrine mediators of bone biology, whose production by hOB cells is responsively regulated by osteotropic cytokines.  相似文献   

4.
OBJECTIVE: To characterize the cellular sites and hormonal regulation of uterine androgen receptor gene expression in the monkey. METHODS: Ovariectomized rhesus monkeys (five in each group) were treated with placebo (the control group), estradiol (E2), E2 plus progesterone, or E2 plus testosterone by sustained-release pellets administered subcutaneously. After 3 days of treatment, uteri were removed and uterine sections were analyzed by in situ hybridization for androgen receptor messenger RNA (mRNA). RESULTS: Androgen receptor mRNA was detected in endometrial stromal cells and myometrial smooth muscle cells, with lesser expression in endometrial epithelial cells. Both E2 and E2 plus progesterone treatment doubled androgen receptor mRNA levels in stromal cells (P < .01), whereas E2 plus testosterone treatment increased stromal androgen receptor mRNA levels by about five-fold (P < .001) compared with placebo treatment. In the endometrial epithelium, E2 alone did not increase androgen receptor mRNA levels significantly. However, the E2 plus progesterone and E2 plus testosterone treatments increased epithelial androgen receptor mRNA levels by 4.3 and 5 times, respectively (P = .008 and P < .002, respectively). Androgen receptor mRNA was distributed homogeneously in smooth muscle cells across the myometrium. Estradiol treatment alone did not increase myometrial androgen receptor mRNA levels significantly, but the E2 plus progesterone and E2 plus testosterone treatments increased myometrial androgen receptor mRNA levels by 1.8 and 2 times, respectively (P = .001 and P < .001, respectively). CONCLUSION: Androgen receptor gene expression was detected in all uterine cell compartments where it was subject to significant sex steroid regulation. The fact that androgen receptor mRNA levels were consistently up-regulated by a combined E2 plus testosterone treatment while E2 treatment alone had little or no effect shows that a collaborative action of E2 and testosterone enhances androgen receptor expression in the monkey uterus.  相似文献   

5.
PURPOSE: To determine the relative contribution of cyclooxygenase (COX)-1 and COX-2 in regulating prostaglandin (PG) E2 and PGF2alpha receptors (EP and FP, respectively) densities and their functions in retinal vasculature of neonatal pigs. METHODS: Newborn pigs were treated intravenously every 8 hours for 48 hours with saline, 40 mg/kg nonselective COX inhibitor ibuprofen, 80 mg/kg COX-1 inhibitor valeryl salicylate, or 5 mg/kg DuP697 and 5 mg/kg NS398, COX-2 inhibitors. Retinal microvessel EP and FP receptor densities were measured by radioligand binding and receptor-coupled effects by determining second-messenger inositol 1,4,5-trisphosphate (IP3) and vasomotor responses. Retinal blood flow (RBF) response to incremental increases in blood pressure (BP) was measured by a microsphere technique. RESULTS: Valeryl salicylate, DuP697, and NS398 reduced retinal PGE2 and PGF2alpha concentrations in the newborn by approximately half, whereas ibuprofen caused further reduction to levels observed in adults. Retinal vessel EP1, EP3, and FP receptor densities increased approximately threefold after treatments with COX-1 or COX-2 inhibitors, and five- to sixfold after ibuprofen treatment. EP and FP receptor upregulation was associated with corresponding increases in IP3 production and retinal vasoconstriction in response to PGF2alpha, fenprostalene (an FP agonist), PGE2, 17-phenyl trinor PGE2 (an EP1 agonist), and M&B28,767 (an EP3 agonist) and with enhanced RBF autoregulation of high BP (> or =125 mm Hg). Conversely, EP2 receptor density and coupled functions were minimally affected by COX inhibition. CONCLUSIONS: Data suggest that increased COX-1- and COX-2-catalyzed prostaglandin synthesis contribute equivalently to the downregulation of retinovascular EP1, EP3, and FP receptors and their vasoconstrictor functions in newborn pigs; the EP2 receptor was not significantly influenced by ontogenic alterations in prostaglandin levels.  相似文献   

6.
The aim of this study was to clarify the possible involvement of nitric oxide (NO) on prostaglandin (PG) E2-9-ketoreductase activity in the gonadotropin-releasing hormone (GnRH)-dependent PGF2 alpha synthesis by the interrenal gland of the female water frog, Rana esculenta, during the post-reproduction. Interrenal glands were incubated in vitro with GnRH, NO donor (sodium nitroprusside, SNP), and inhibitors of phospholipase C (compound 48/80), inositol triphosphate (decavanadate), calmodulin (calmidazolium), NO synthase (L-NAME), and PGE2-9-ketoreductase (palmitic acid). Production of PGE2 and PGF2 alpha and NO synthase and PGE2-9-ketoreductase activities were determined. GnRH and SNP increased PGF2 alpha production and PGE2-9-ketoreductase activity, and decreased production of PGE2 and GnRH increased NO synthase activity. GnRH effects were blocked by all inhibitors, except for palmitic acid, which did not affect NO synthase activity, which is increased by GnRH. This study indicates that NO may be involved in regulation of the R. esculenta post-reproduction through stimulation of PGE2-9-ketoreductase activity in GnRH-dependent PGF2 alpha synthesis by the frog interrenal gland.  相似文献   

7.
Studies were performed to determine whether the inhibition of the decidual cell reaction induced by intrauterine infusion of the angiotensin converting enzyme inhibitor enalaprilat in rats is reversed by activation of Ca2+ influx. Influx of Ca2+ was shown to be stimulated by angiotensin II in endometrial cells in this study. Ovariectomized, adult female rats were sensitized for the decidual cell reaction with steroid treatments. For experiments in vivo, intrauterine infusions of enalaprilat alone, or in combination with the Ca2+ ionophore A23187, a synthetic diacylglycerol, and dioctanoyl-sn-glycerol (diC8), and PGE2 were initiated on the day of uterine sensitivity. Enalaprilat inhibited the increases in uterine PG concentrations and uterine weight that occur following infusion of the vehicle. Concurrent infusion of A23187 partially, but not completely, reversed the inhibition of uterine weight increase; diC8 did not affect the inhibition of enalaprilat. A23187 did not reverse the effects of enalaprilat on uterine PG concentrations. Concurrent infusion of A23187 and PGE2 fully reversed the inhibitory effect of enalaprilat on uterine weight. For experiments in vitro, endometrial stromal and epithelial cells were obtained from uteri on the day of sensitivity and maintained in suspension. Cytosolic free calcium concentration ([Ca2+]i) was monitored in cell suspensions by fluorescence spectrophotometry using the Ca(2+)-sensitive probe, indo-1. Angiotensin II induced a transient increase in [Ca2+]i of endometrial stromal cell suspensions, but not of epithelial cells; PGE2 did not increase [Ca2+]i in stromal or epithelial cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
Cumulus-oocyte complexes, obtained from superovulated Balb/C virgin female mice, released to the incubation media significant amounts of PGE1, PGE2 and PGF2 alpha, as estimated by bioassay. Fertilization rates in vitro decreased sharply when cumulus-oocyte complexes were treated with indomethacin (10(-6) M) and then inseminated with 5000 sperm per oocyte. In order to explore if the reduced prostaglandin (PG) concentration was responsible for diminished fertilization rates, PGE1, PGE2 and PGF2 alpha (10(-9) M) were added to the fertilization media of treated oocytes. PGE1 and PGE2 but not PGF2 alpha returned fertilization rates to control levels. Besides, PGE1 (10(-9) M) enhanced fertilization rates with reduced sperm numbers (1000 sperm per oocyte) of untreated cumulus-oocyte complexes. In conclusion, PG synthesis and release of mouse cumulus-oocyte complexes affects fertilization in vitro, and it is suggested that PGs of the E series modulate sperm function at the moment of fertilization.  相似文献   

10.
OBJECTIVE AND DESIGN: The role of cyclooxygenase (COX)-2 was examined using a rat endotoxin shock model and the potency and selectivity of NS-398, a COX-2 selective inhibitor in vitro, for COX-2 activity was examined in vivo. MATERIAL: Male Wistar rats (weighing 140-180 g) were used. METHODS: Lipopolysaccharide (LPS, 1 mg/kg, i.v.) was administered to rats (LPS-treated rats) and expression of COX-1 mRNA and COX-2 mRNA in the aorta and peripheral blood leukocytes was examined by RT-PCR. COX activity was assessed by measuring the plasma 6-keto prostaglandin (PG) F1 alpha, PGE2 and thromboxane (TX)B2 30s after administration of arachidonic acid (AA, 3 mg/kg, i.v.), NS-398 (0.3-100 mg/kg, p.o.) or indomethacin (0.3-3 mg/kg, p.o.) was administered 1 h before the AA injection. RESULTS: COX-2 mRNA was detectable in the aorta and peripheral blood leukocytes at least from 3 to 9 h after the LPS injection but not in non-LPS-treated rats. Plasma 6-keto PGF1 alpha, PGE2 and TXB2 levels after AA injection into LPS-treated rats were significantly enhanced compared to findings in non-LPS-treated rats. NS-398 showed significant inhibition of the increase in PGs in LPS-treated rats, the ED50 values being 0.35 mg/kg for 6-keto PGF1 alpha, 1.5 mg/kg for PGE2 and < 0.3 mg/kg for TXB2. NS-398 even at 100 mg/kg did not significantly suppress the increased PGs levels in non-LPS-treated rats. In contrast, indomethacin significantly inhibited plasma PGs levels after AA injection into LPS-treated rats and non-LPS-treated rats. The ED50 values in LPS-treated rats, determined by 6-keto PGF1 alpha, PGE2 and TXB2 production, were 1.0, 1.3 and 2.3 mg/kg and those in non-LPS-treated rats were 0.42, 0.24 and 0.93 mg/kg, respectively. CONCLUSIONS: In a rat endotoxin shock model, expression of COX-2 plays a role in an increase in COX activity. NS-398 showed preferential inhibitory effects on COX-2 activity in vivo. This approach is useful to directly analyze the inhibitory activity of NSAIDs for COX-1 and COX-2 in vivo.  相似文献   

11.
OBJECTIVE: To determine the effects of interleukin 1alpha (IL-1alpha), tumor necrosis factor-alpha (TNF-alpha), dexamethasone, and 17beta-estradiol on the expression of cyclooxygenase-1 (COX-1) and COX-2 in bovine chondrocytes. METHODS: Northern blot analysis was used to quantify COX-1 and COX-2 mRNA expression in primary cultures of bovine chondrocytes and prostaglandin production to evaluate COX activity. RESULTS: IL-1alpha and TNF-alpha increased the expression of COX-2. This effect was independent of de novo protein synthesis and dependent on increased mRNA stability in the case of IL-1alpha. Dexamethasone inhibited the effects of both cytokines. 17beta-estradiol inhibited COX-2 mRNA expression in basal conditions, but had no effect on COX-2 expression induced by cytokines. The specific COX-2 inhibitor compound NS 398 prevented the increase in prostaglandin E2 (PGE2) production induced by the cytokines. COX-1 levels remained stable with all treatments. CONCLUSION: Increase in mRNA stability is a mechanism implicated in the induction of COX-2 by some cytokines. The effects of IL-1alpha and TNF-alpha on PGE2 production are mainly due to an increase in COX-2 activity as shown by the effect of compound NS 398. 17beta-estradiol inhibits COX-2 mRNA expression in basal conditions, suggesting that estrogens could be implicated in the control of cartilage metabolism.  相似文献   

12.
13.
Increasing evidence suggests that cytokine products of the immune system may play a regulatory role in corpus luteum regulation in several species. The role of cytokines in primate luteal function, however, remains unclear. In the present study we examined the effects of interleukin-1 beta (IL-1 beta), tumor necrosis factor alpha (TNF alpha), and interferon-gamma (IFN-gamma) on progesterone and prostaglandin (PGE2, PGF2 alpha) production by primate luteal cells in vitro. Specifically, corpora lutea were removed from normally cycling cynomolgus monkeys (n = 30 corpora lutea) during either the early (Days 3-5 after the estimated LH surge), mid (Days 8-10), or late (Days 12-14) luteal phase of the menstrual cycle. The corpora lutea were dispersed into individual cells using collagenase, DNase, and hyaluronidase. Approximately 50,000 viable luteal cells per tube were incubated in Ham's F-10 medium with increasing concentrations of IL-1 beta (0.1-10 ng/ml), TNF alpha (1-100 ng/ml), or IFN-gamma (10-1000 U/ml) in the presence and absence of hCG for 8 h at 37 degrees C. TNF alpha and IFN-gamma had no effect on progesterone PGE2, or PGF2 alpha production during any phase of the cycle at the doses tested. In contrast, IL-1 beta significantly stimulated PGF2 alpha production in a dose-dependent manner during the mid and late luteal phases (p < 0.05). Human CG alone had no effect on PGE2 or PGF2 alpha production by dispersed luteal cells in vitro but inhibited IL-1 beta-stimulated PGF2 alpha production. As expected, hCG stimulated progesterone production by primate luteal cells in vitro. Interestingly, IL-1 beta inhibited this hCG stimulation of progesterone production. In summary, these date suggest that IL-1 beta is a potentially important modulator of prostaglandin production by the primate corpus luteum. In view of this, cytokine-mediated changes in prostaglandin production by the primate corpus luteum may participate in the physiological regulation of luteal function.  相似文献   

14.
Prostaglandins (PGs) and cytokines, such as interleukin-1 (IL-1) and interleukin-6 (IL-6), have been implicated in the etiopathology of various inflammatory and degenerative disorders, including Alzheimer's disease (AD) and prion diseases. Nonsteroidal antiinflammatory drugs (NSAIDs), potent inhibitors of PG synthesis, appear to be beneficial in the treatment of AD. To assess whether PGs are able to induce IL-6 synthesis in cells of the CNS, IL-6 mRNA and protein syntheses were measured in a human astrocytoma cell line after stimulation with different PGs. PGE1 and PGE2, but not PGD2 and PGF2 alpha, led to a rapid and transient induction of IL-6 mRNA, followed by IL-6 protein synthesis. Furthermore, PGE2 potentiated IL-1 beta-induced IL-6 mRNA synthesis. These results are discussed with respect to the participation of PGs in neurodegenerative diseases (and its inhibition by NSAIDs) by affecting cytokine expression.  相似文献   

15.
IFN-tau (IFN-tau) constitutes a new class of type I IFN which is not virus-inducible, unlike IFN-alpha and IFN-beta, but is constitutively produced by the trophectoderm of the ruminant conceptus during a very short period in early pregnancy. It plays a pivotal role in the mechanisms of maternal recognition of pregnancy in ruminants and it displays high antiviral and antiproliferative activities across species with a prominent lack of cytotoxicity at high concentrations in vitro in cell culture and possibly in vivo. It exhibits high antiretroviral activity against HIV and exhibits immunosuppressive activity in a multiple sclerosis model and reduces embryo and fetal mortality by stimulation of IL-10 production. In this review all the biochemical and para-hormonal properties of this novel IFN-tau are described in detail: structural characteristics of proteins and genes, trophoblast expression, regulation of its expression, structure of its gene promoter, its absence in human species and in non-ruminant animals, the evolution of the IFN-tau genes, its structure-function relationships with its three-dimensional structure, structural localization of biological activities, its lack of cytotoxicity and its receptor. Surprisingly, for an IFN, IFN-tau is also a pregnancy-embryonic signal with paracrine antiluteolytic activity. In order to maintain luteal progesterone secretion, IFN-tau inhibits PGF-2alpha pulsatile secretion and oxytocin uterine receptivity in early pregnancy. It is believed to suppress pulsatile release of endometrial PGF-2alpha by preventing oxytocin and estrogen receptor expression. Additionally, it directly regulates prostaglandin metabolism and possibly the PGE:PGF-2alpha ratio.  相似文献   

16.
Previous studies in bullfrogs have demonstrated the presence of leukotriene (LT)C4 binding sites in the brain. However, synthesis of eicosanoids by brain tissue has not been examined. Because prostaglandin (PG) synthesis differs in warm- and cold-acclimated bullfrog lung tissue, this study compared the synthesis of prostaglandins and leukotrienes in brains from warm-(22 degrees C) and cold-acclimated (5 degrees C) animals. Initial experiments determined that leukotriene and prostaglandin production rates were greatest during the initial 30 min time period. Therefore, tissues were incubated in Munsick's solution and gassed with 95% O2, 5% CO2 for 30 min. Media were analyzed by radioimmunoassay for LTC4, LTB4, PGE2, PGF2 alpha, TXB2, and 6-keto PGF1 alpha. In warm-acclimated bullfrog brains, production was as follows: LTC4 > PGE2 > 6-keto PGF1 alpha, thromboxane (TX)B2, LTB4, and PGF2 alpha. Brain tissues from cold-acclimated animals incubated at 22 degrees C produced significantly greater quantities of PGE2 and 6-keto PGF1 alpha than did brains from warm-acclimated animals. Stimulation of TXB2 levels was observed when the animal was stunned with a blow to the head prior to decapitation. Indomethacin, a cyclooxygenase inhibitor, decreased prostaglandin but not leukotriene synthesis. Epinephrine (4 x 10(-8) M), the amphibian sympathetic postganglionic neurotransmitter, stimulated leukotriene synthesis by brains from warm-acclimated bullfrogs, and the effect was blocked with the 5-lipoxygenase inhibitor MK-886 (5 x 10(-5) M). These results clearly indicate that the bullfrog brain synthesized both leukotrienes and prostaglandins. Further studies are necessary to determine their function in the amphibian central nervous system.  相似文献   

17.
The understanding of immune surveillance and inflammation regulation in cerebral tissue is essential in the therapy of neuroimmunological disorders. We demonstrate here that primary human glial cells were able to produce alpha- and beta-chemokines (IL-8 > growth related protein alpha (GROalpha) > RANTES > microphage inflammatory protein (MIP)-1alpha and MIP-1beta) in parallel to PGs (PGE2 and PGF2alpha) after proinflammatory cytokine stimulation: TNF-alpha + IL-1beta induced all except RANTES, which was induced by TNF-alpha + IFN-gamma. Purified cultures of astrocytes and microglia were also induced by the same combination of cytokines, to produce all these mediators except MIP-1alpha and MIP-1beta, which were produced predominantly by astrocytes. The inhibition of PG production by indomethacin led to a 37-60% increase in RANTES, MIP-1alpha, and MIP-1beta but not in GROalpha and IL-8 secretion. In contrast, inhibition of IL-8 and GRO activities using neutralizing Abs resulted in a specific 6-fold increase in PGE2 but not in PGF2alpha production by stimulated microglial cells and astrocytes, whereas Abs to beta-chemokines had no effect. Thus, the production of PGs in human glial cells down-regulates their beta-chemokine secretion, whereas alpha-chemokine production in these cells controls PG secretion level. These data suggest that under inflammatory conditions, the intraparenchymal production of PGs could control chemotactic gradient of beta-chemokines for an appropriate effector cell recruitment or activation. Conversely, the elevated intracerebral alpha-chemokine levels could reduce PG secretion, preventing the exacerbation of inflammation and neurotoxicity.  相似文献   

18.
This study was undertaken to investigate the enzymatic regulation of the biosynthesis of vasoconstrictor prostanoids by resting and interleukin (IL)-1(beta)stimulated human umbilical vein endothelial cells (HUVECs). Biosynthesis of eicosanoids in response to IL-1beta, exogenous labeled arachidonic acid (AA), or histamine, as well as their spontaneous release, was evaluated by means of HPLC and RIA. HUVECs exposed to IL-1beta produced prostaglandin (PG) I2 for no longer than 30 seconds after the substrate was added irrespective of the cyclooxygenase (COX) activity, whereas the time course of PGE2 and PGD2 formation was parallel to the COX activity. The ratio of PGE2 to PGD2 produced by HUVECs was similar to that obtained by purified COX-1 and COX-2. Production of PGF2alpha from exogenous AA was limited and similar in both resting and IL-1beta-treated cells. PGF2alpha was the main prostanoid released into the medium during exposure to IL-1beta, whereas when HUVECs treated with IL-1beta were stimulated with histamine or exogenous AA, PGE2 was released in a higher quantity than PGF2alpha. PGF2alpha released into the medium during treatment with IL-1beta and the biosynthesis of PGE2 and PGD2 in response to exogenous AA or histamine increased with COX-2 expression, whereas this did not occur in the case of PGI2. We observed that PGI synthase (PGIS) mRNA levels were not modified by the exposure to IL-1beta, but the enzyme was partially inactivated. When SnCl2 was added to the incubation medium, the transformation of exogenous AA-derived PGH2 into PGE2 and PGD2 was totally diverted toward PGF2alpha. Overall, these results support the conclusions that PGE2 and PGD2 (and also probably PGF2alpha) were nonenzymatically derived from PGH2 in HUVECs. The concept that a high ratio of PGH2 was released by the IL-1beta-treated HUVECs and isomerized outside the cell into PGE2 and PGD2 was supported by the biosynthesis of thromboxane B2 by COX-inactivated platelets, indicating the uptake by platelets of HUVEC-derived PGH2. The IL-1beta-induced increase in the release of PGH2 by HUVECs was suppressed by the COX-2-selective inhibitor SC-58125 and correlated with both COX-2 expression and PGIS inactivation. An approach to the mechanism of inactivation of PGIS by the exposure to IL-1beta was performed by using labeled endoperoxides as substrate. The involvement of HO. in the PGIS inactivation was supported by the fact that deferoxamine, pyrrolidinedithiocarbamate, DMSO, mannitol, and captopril antagonized the effect of IL-1beta on PGIS to different degrees. The NO synthase inhibitor NG-monomethyl-L-arginine also antagonized the PGIS inhibitory effect of IL-1beta, indicating that NO. was also involved. NO. reacts with O2-. to form peroxynitrite, which has been reported to inactivate PGIS. Homolytic fission of the O-O bond of peroxynitrite yields NO2. and HO.. The fact that 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), which reacts with NO. to form NO2., dramatically potentiated the IL-1beta effect suggests that NO2. could be a species implicated in the inactivation of PGIS. Cooperation of HO. was supported by the fact that DMSO partially antagonized the effect of carboxy-PTIO. Although our results on the exact mechanism of the inactivation of PGIS caused by IL-1beta were not conclusive, they strongly suggest that both NO. and HO. were involved.  相似文献   

19.
Experiments were performed on uteri from estrogen-primed female rats. Bradykinin (BK) (10(-8) M) significantly augmented biosynthesis of prostaglandin F2 alpha (PGF2alpha) and prostaglandin E2 (PGE2), and this synthesis was completely blocked by NG-monomethyl L-arginine (NMMA) (300 microM), a competitive inhibitor of nitric oxide synthase (NOS). Blockade of prostaglandin synthesis by indomethacin caused rapid dissipation of isometric developed tension (IDT) induced by BK. Blockade of NOS with NMMA had similar but less marked effects. Combining the two inhibitors produced an even more rapid decay in IDT, suggesting that BK-induced NO release maintains IDT by release of prostanoids. The decline of frequency of contraction (FC) was not significantly altered by either indomethacin or NMMA but was markedly accelerated by combination of the inhibitors, which suggests that PGs maintain FC and therefore FC decline is accelerated only when PG production is blocked completely by combination of the two inhibitors of PG synthesis. The increase in IDT induced by oxytocin was unaltered by indomethacin, NMMA or their combination indicating that neither NO nor PGs are involved in the contractions induced by oxytocin. However, the decline in FC with time was significantly reduced by the inhibitor of NOS, NMMA, suggesting that FC decay following oxytocin is caused by NO released by the contractile process. In the case of PGF2alpha, NMMA resulted in increased initial IDT and FC. The decline in FC was rapid and dramatically inhibited by NMMA. Receptor-mediated contraction by BK, oxytocin, and PGF2alpha is modulated by NO that maintains IDT by releasing PGs but reduces IDT and FC via cyclic GMP.  相似文献   

20.
The glandular epithelial cells were found to be the main source of PGF2 alpha (the uterine luteolytic hormone) in guinea-pig endometrium. There was a selective increase in PGF2 alpha production by these cells in culture at the time of the cycle (i.e. day 15) at which there is increased PGF2 alpha release from the guinea-pig uterus in vivo. TMB-8 (an intracellular calcium antagonist), W-7, trifluoperazine (both calmodulin antagonists), thapsigargin (an inhibitor of intracellular calcium uptake) and berberine (an inhibitor of calcium release) reduced the output of PGF2 alpha from day 7 glandular epithelial cells indicating that intracellular calcium is necessary for PGF2 alpha production by these cells. In contrast to its stimulatory effect on PGF2 alpha output from the guinea-pig uterus superfused in vitro and guinea-pig endometrium in culture, caffeine inhibited the output of PGF2 alpha from guinea-pig glandular epithelial cells in culture. Its effect was not fully shared by theophylline, nor mimicked by forskolin showing that cyclic AMP is not involved. The inhibitory actions of caffeine and those of the compounds which interfere with the action of intracellular calcium were not additive, suggesting that caffeine modulates the action of intracellular calcium in some way. Caffeine reduced the intracellular free calcium concentration in endometrial cells, but it was not particularly effective in this respect on day 7 glandular epithelial cells. Caffeine may therefore modulate the action of intracellular calcium in some other way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号