首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-dimensional (3-D) transfer function is a useful concept for describing image formation in confocal scanning microscopy. From it we can derive the corresponding 2-D transfer function for in-focus imaging. In confocal transmission this can be derived analytically. The 1-D transfer function for on-axis imaging, which can be expressed in an analytical form even for confocal fluorescence with differing wavelengths of excitation and fluorescence, can be derived from the 3-D transfer function. The 2-D transfer function for in-focus imaging in confocal fluorescence microscopy with a finite-sized detector is also presented, which is shown to exhibit sign changes and can therefore result in reversals of image contrast.  相似文献   

2.
为了提高激光共聚焦系统的扫描速度,本文提出一种逐场扫描的场同步扫描方法。构建了激光共焦显微系统,将美国THORLABS公司的GVS002型二维检流计振镜应用于该系统,根据光学系统参数以及扫描范围要求计算振镜的整场扫描波形。借助NI公司的PCIe6353多功能数据采集卡,输出行同步的扫描波形,同时,对共焦显微系统共焦位置上针孔处的光强信号进行采集,先后扫描一幅256×256和512×512的图像,记录扫描图像和成像时间;然后,在相同的硬件结构下,以场同步的方式输出扫描波形,记录扫描图像和成像时间。实验结果表明:场同步方式扫描256×256图像的速度可提高10倍,扫描512×512图像的速度可提高5倍,且满足共焦显微成像的清晰、抗干扰能力强等要求。与行同步扫描方法相比,场同步扫描方法可以消除行与行之间转换的停留时间,在不改变硬件的情况下大幅提高扫描速度。  相似文献   

3.
基于连续扫描方式的激光共焦扫描显微镜的研制   总被引:2,自引:2,他引:0  
研发了一套基于连续扫描的激光共焦扫描显微镜(laser confocal scanning microscopy,LCSM)系统。该系统采用工作台连续运动方式实现扫描,提出了利用单次采集的数据滤除随机噪声的方法,避免了多帧取平均对成像速度造成的影响。实现连续扫描的关键在于解决工作台运动与数据采集的同步问题,利用采集卡有限采集模式,合理匹配工作台参数和采集参数,成功解决了这一问题。详细介绍了影响分辨率的因素,通过合理选取探测器针孔直径,取样间隔,确保了实现高分辨率的要求。系统利用Visual C#开发的控制平台,成功地对生物细胞进行了扫描成像。实验结果表明:基于连续扫描的LCSM具有较高的分辨率,生成的显微图像没有任何畸变,并且成像速度有了大幅度提高。  相似文献   

4.
在激光扫描共聚焦显微成像技术基础上引入了光谱成像技术以便区分生物组织中的不同荧光成分。采用分光棱镜对荧光进行光谱展开,在光谱谱面处设置两个可移动缝片形成出射狭缝,两个步进电机带动安装其上的两个缝片设置系统在整个工作波长(400~700 nm)内的光谱带宽,其最小光谱带宽优于5 nm。用488 nm激光和低压汞灯实际测量了几条谱线对应的狭缝位置并和理论值做了比较,结果显示实际狭缝位置和理论值的差值均小于0.1 mm。在全光谱和50 μm出射狭缝(对应2.5 nm光谱带宽)对老鼠肾脏组织进行了共聚焦光谱成像实验,获得了老鼠肾脏组织中DAPI标定的细胞核图像和Alexa Fluor®488标定的肾脏小球曲管图像,实现了对老鼠肾脏组织不同成分的区分。实验结果表明:提出的系统能够进行共聚焦光谱成像,扩大了共聚焦显微镜的适用范围。  相似文献   

5.
Resilin is a rubber-like protein found in the exoskeleton of arthropods. It often contributes large proportions to the material of certain structures in movement systems. Accordingly, the knowledge of the presence and distribution of resilin is essential for the understanding of the functional morphology of these systems. Because of its specific autofluorescence, resilin can be effectively visualized using fluorescence microscopy. However, the respective excitation maximum is in the UV range, which is not covered by the lasers available in most of the modern commercial confocal laser scanning microscopes. The goal of this study was to test the potential of confocal laser scanning microscopy (CLSM) in combination with a 405 nm laser to visualize and analyse the presence and distribution of resilin in arthropod exoskeletons. The results clearly show that all resilin-dominated structures, which were visualized successfully using wide-field fluorescence microscopy (WFM) and a 'classical' UV excitation, could also be visualized efficiently with the proposed CLSM method. Furthermore, with the application of additional laser lines CLSM turned out to be very appropriate for studying differences in the material composition within arthropod exoskeletons in great detail. As CLSM has several advantages over WFM with respect to detailed morphological imaging, the application of the proposed CLSM method may reveal new information about the micromorphology and material composition of resilin-dominated exoskeleton structures leading to new insights into the functional morphology and biomechanics of arthropods.  相似文献   

6.
Scanning microphotolysis is a method that permits the user to select, within the scanning field of a confocal microscope, areas of arbitrary geometry for photobleaching or photoactivation. Two-photon absorption, by contrast, confers on laser scanning microscopy a true spatial selectivity by restricting excitation to very small focal volumes. In the present study the two methods were combined by complementing a laser scanning microscope with both a fast programmable optical switch and a titan sapphire laser. The efficiency and accuracy of fluorescence photobleaching induced by two-photon absorption were determined using fluorescein-containing polyacrylamide gels. At optimal conditions a single scan was sufficient to reduce the gel fluorescence by ≈40%. Under these conditions the spatial accuracy of photobleaching was 0.5±0.1 μm in the lateral ( x y ) and 3.5±0.5 μm in the axial ( z ) direction, without deconvolution accounting for the optical resolution. Deconvolution improved the accuracy values by ≈30%. The method was applied to write complex three-dimensional patterns into thick gels by successively scanning many closely spaced layers, each according to an individual image mask. Membrane transport was studied in a model tissue consisting of human erythrocyte ghosts carrying large transmembrane pores and packed into three-dimensional arrays. Upon equilibration with a fluorescent transport substrate single ghosts could be selectively photobleached and the influx of fresh transport substrate be monitored. The results suggest that two-photon scanning microphotolysis provides new possibilities for the optical analysis and manipulation of both technical and biological microsystems.  相似文献   

7.
A theory for multiphoton fluorescence imaging in high aperture scanning optical microscopes employing finite sized detectors is presented. The effect of polarisation of the fluorescent emission on the imaging properties of such microscopes is investigated. The lateral and axial resolutions are calculated for one-, two- and three-photon excitation of p-quaterphenyl for high and low aperture optical systems. Significant improvement in lateral resolution is found to be achieved by employing a confocal pinhole. This improvement increases with the order of the multiphoton process. Simultaneously, it is found that, when the size of the pinhole is reduced to achieve the best possible resolution, the signal-to-noise ratio is not degraded by more than 30%. The degree of optical sectioning achieved is found to improve dramatically with the use of confocal detection. For two- and three-photon excitation axial full width half-maximum improvement of 30% is predicted.  相似文献   

8.
The bilateral scanning approach to confocal microscopy is characterized by the direct generation of the image on a two-dimensional (2-D) detector. This detector can be a photographic plate, a CCD detector or the human eye, the human eye permitting direct visualization of the confocal image. Unlike Nipkow-type systems, laser light sources can be used for excitation. A design called a carousel has been developed, in which the bilateral confocal scan capability can be added to an existing microscope so that rapid exchange and comparison between confocal and non-confocal imaging conditions is possible. The design permits independent adjustment of confocal sectioning properties with lateral resolutions better than, or, in the worst case equivalent to, those available in conventional microscopy. The carousel can be considered as a stationary optical path in which certain imaging conditions, such as confocality, are defined and operate on part of the imaging field. The action of the bilateral scan mirror then extends this image condition over the whole field. A number of optical arrangements for the carousel are presented which realize various forms of confocal fluorescence and reflection imaging, with point, multiple point or slit confocal detection arrangements. Through the addition of active elements to the carousel direct stereoscopic, ratio, time-resolved and other types of imaging can be achieved, with direct image formation on a CCD, eye or other 2-D detectors without the need to modify the host microscope. Depending on the photon flux available, these imaging modes can run in real-time or can use a cooled CCD at (very) low light level for image integration over an extended period.  相似文献   

9.
We propose a novel imaging method that enables the enhancement of three‐dimensional resolution of confocal microscopy significantly and achieve experimentally a new fluorescence emission difference method for the first time, based on the parallel detection with a detector array. Following the principles of photon reassignment in image scanning microscopy, images captured by the detector array were arranged. And by selecting appropriate reassign patterns, the imaging result with enhanced resolution can be achieved with the method of fluorescence emission difference. Two specific methods are proposed in this paper, showing that the difference between an image scanning microscopy image and a confocal image will achieve an improvement of transverse resolution by approximately 43% compared with that in confocal microscopy, and the axial resolution can also be enhanced by at least 22% experimentally and 35% theoretically. Moreover, the methods presented in this paper can improve the lateral resolution by around 10% than fluorescence emission difference and 15% than Airyscan. The mechanism of our methods is verified by numerical simulations and experimental results, and it has significant potential in biomedical applications.  相似文献   

10.
Three-dimensional confocal imaging of polymer samples was achieved by the use of two-photon excited fluorescence in both positive and negative contrast modes. The fluorophore was a new and highly efficient two-photon induced upconverter, resulting in improved signal strength at low pumping power. Because of the relatively long wavelength of the excitation source (798 nm from a mode-locked Ti:Sap-phire laser), this technique shows a larger penetration depth into the samples than provided by conventional single-photon fluorescence confocal microscopy. Single-photon and two-photon images of the same area of each sample show significant differences. The results suggest the possibility of using two-photon confocal microscopy, in conjunction with highly efficient fluorophores, as a tool to study the surface, interface, and fracture in material science applications.  相似文献   

11.
We have used a multiple-laser confocal microscope with lines at 325, 442, 488, 514 and 633 nm to investigate optical sectioning of botanical specimens over a wide range of wavelengths. The 442-nm line allowed efficient excitation of Chromomycin A3, with minimal background autofluorescence, to visualize GC-rich heterochromatin as an aid to chromosome identification. Sequential excitation with 442- and 488-nm light enabled ratio imaging of cytosolic pH using BCECF. The red HeNe laser penetrated deep into intact plant tissues, being less prone to scattering than shorter blue lines, and was also used to image fluorescent samples in reflection, prior to fluorescence measurements, to reduce photobleaching. Chromatic corrections are more important in confocal microscope optics than in conventional microscopy. Measured focus differences between blue, green and red wavelengths, for commonly used objectives, were up to half the optical section thickness for both our multi-laser system and a multi-line single-laser instrument. This limited high-resolution sectioning at visible wavelengths caused a loss in signal. For ultraviolet excitation the focus shift was much larger and had to be corrected by pre-focusing the illumination. With this system we have imaged DAPI-stained nuclei, callose in pollen tubes using Aniline Blue and the calcium probe Indo-1.  相似文献   

12.
The development of a photobleaching technique, CFMM (continuous fluorescence multipoint microphotolysis), to measur e diffusion coefficients in gel systems using a confocal scanning laser microscope is described. Diffusion coefficients (D) were determined for fluorescently labelled dextrans of varying molecular weight in agarose gels, and the results compared with two other methods. CFMM enabled diffusion coefficients to be rapidly determined from the profile across an irradiated area within a defined microscopic location of the gel. The technique was experimentally simple and produced values of D that corresponded well with classical double-diffusion cell methods.  相似文献   

13.
Multiparameter fluorescence microscopy is often used to identify cell types and subcellular organelles according to their differential labelling. For thick objects, the quantitative comparison of different multiply labelled specimens requires the three-dimensional (3-D) sampling capacity of confocal laser scanning microscopy, which can be used to generate pseudocolour images. To analyse such 3-D data sets, we have created pixel fluorogram representations, which are estimates of the joint probability densities linking multiple fluorescence distributions. Such pixel fluorograms also provide a powerful means of analysing image acquisition noise, fluorescence cross-talk, fluorescence photobleaching and cell movements. To identify true fluorescence co-localization, we have developed a novel approach based on local image correlation maps. These maps discriminate the coincident fluorescence distributions from the superimposition of noncorrelated fluorescence profiles on a local basis, by correcting for contrast and local variations in background intensity in each fluorescence channel. We believe that the pixel fluorograms are best suited to the quality control of multifluorescence image acquisition. The local image correlation methods are more appropriate for identifying co-localized structures at the cellular or subcellular level. The thresholding of these correlation maps can further be used to recognize and classify biological structures according to multifluorescence attributes.  相似文献   

14.
The intracortical pathway of cerebellar climbing fibers have been traced by means of scanning electron microscpy (SEM) and confocal laser scanning microscopy (CLSM) to study the degree of lateral collateralization of these fibers in the granular Purkinje cell and molecular layers. Samples of teleost fish were processed for conventional and freeze‐fracture SEM. Samples of hamster cerebellum were examined by means of CLSM using FM4–64 as an intracellular stain. High resolution in lens SEM of primate cerebellar cortex was carried out using chromium coating. At scanning electron and confocal laser microscopy levels, the climbing fibers appeared at the white matter and granular layer as fine fibers with a typical arborescence or crossing‐over branching pattern, whereas the mossy fibers exhibited a characteristic dichotomous bifurcation. At the granular layer, the parent climbing fibers and their tendrils collaterals appeared to be surrounding granule and Golgi cells. At the interface between granule and Purkinje cell layers, the climbing fibers were observed giving off three types of collateral processes: those remaining in the granular layer, others approaching the Purkinje cell bodies, and a third type ascending directly to the molecular layer. At this layer, retrograde collaterals were seen descending to the granular layer. By field emission high‐resolution SEM of primate cerebellar cortex, the climbing fiber terminal collaterals were appreciated ending by means of round synaptic knobs upon the spines of secondary and tertiary Purkinje cell dendrites.  相似文献   

15.
Background : Multifunctional two‐photon laser scanning microscopy provides attractive advantages over conventional two‐photon laser scanning microscopy. For the first time, simultaneous measurement of the second harmonic generation (SHG) signals in the forward and backward directions and two photon excitation fluorescence were achieved from the deep shade plant Selaginella erythropus. Results : These measurements show that the S. erythropus leaves produce high SHG signals in both directions and the SHG signals strongly depend on the laser's status of polarization and the orientation of the dipole moment in the molecules that interact with the laser light. The novelty of this work is (1) uncovering the unusual structure of S. erythropus leaves, including diverse chloroplasts, various cell types and micromophology, which are consistent with observations from general electron microscopy; and (2) using the multifunctional two‐photon laser scanning microscopy by combining three platforms of laser scanning microscopy, fluorescence microscopy, harmonic generation microscopy and polarizing microscopy for detecting the SHG signals in the forward and backward directions, as well as two photon excitation fluorescence. Conclusions : With the multifunctional two‐photon laser scanning microscopy, one can use noninvasive SHG imaging to reveal the true architecture of the sample, without photodamage or photobleaching, by utilizing the fact that the SHG is known to leave no energy deposition on the interacting matter because of the SHG virtual energy conservation characteristic.  相似文献   

16.
A confocal scanning laser microscope operating at 514 and 488 nm has been used to obtain two-dimensional (2-D) images of the mercuric bromide (HgBr2) crystal surface by photoluminescence, reflection, and transmission phenomena. Our measurements indicate that regions showing a strong photoluminescence may appear on the surface. By processing the 2-D images. we obtained the three-dimensional images, which offer a better possibility for the investigation. The analysis of spectral lines may be correlated with the presence of the Hg impurities.  相似文献   

17.
The diffusion coefficient as well as the dimensionality of the diffusion process can be determined by straightforward and facile data analysis, when fluorescence recovery after photobleaching (FRAP) is measured as a function of time and space by means of confocal laser scanning microscopy. Experiments representing one-dimensional diffusion from a plane source or two-dimensional diffusion from a line source are readily realized. In the data analysis, the deviations of the actual initial conditions from ideal models are consistently taken into account, so that no calibration measurements are needed. The method is applied to FRAP experiments on solutions of Rhodamine B in glycerol and aqueous suspensions of polymethyl methacrylate microspheres.  相似文献   

18.
In this paper we report stimulated emission depletion (STED) and two-photon excitation (2PE) fluorescence microscopy with continuous wave (CW) laser beam using a new generation laser scanning confocal microscope equipped for STED-CW (TCS STED-CW, Leica Microsystems, Mannheim, Germany). We show the possibility to achieve CW-2PE with the very same beam used for STED-CW. This feature extends the performance of the microscope allowing multimodal imaging (CW-2PE, STED-CW, confocal).  相似文献   

19.
The fluorescence photobleaching method has been widely used to study molecular transport in single living cells and other microsystems while confocal microscopy has opened new avenues to high-resolution, three-dimensional imaging. A new technique, scanning microphotolysis (Scamp), combines the potential of photobleaching, beam scanning and confocal imaging. A confocal scanning laser microscope was equipped with a sufficiently powerful laser and a novel device, the ‘Scamper’. This consisted essentially of a filter changer, an acousto-optical modulator (AOM) and a computer. The computer was programmed to activate the AOM during scanning according to a freely defined image mask. As a result almost any desired pattern could be bleached (‘written’) into fluorescent samples at high definition and then imaged (‘read’) at non-bleaching conditions, employing full confocal resolution. Furthermore, molecular transport could be followed by imaging the dissipation of bleach patterns. Experiments with living cells concerning dynamic processes in cytoskeletal filaments and the lateral mobility of membrane lipids suggest a wide range of potential biological applications. Thus, Scamp offers new possibilities for the optical manipulation and analysis of both technical and biological microsystems.  相似文献   

20.
Shortly after its development, the white light supercontinuum laser was applied to confocal scanning microscopy as a more versatile substitute for the multiple monochromatic lasers normally used for the excitation of fluorescence. This light source is now available coupled to commercial confocal fluorescence microscopes. We have evaluated a supercontinuum laser as a source for a different purpose: confocal interferometric imaging of living cells and artificial models by interference reflection. We used light in the range 460-700 nm where this source provides a reasonably flat spectrum, and obtained images free from fringe artefacts caused by the longer coherence length of conventional lasers. We have also obtained images of cytoskeletal detail that is difficult to see with a monochromatic laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号