首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
本文设计了一种带过温保护功能的LED恒流驱动电路。该电路由恒流驱动模块和温度传感模块组成,能在设定温度下同时控制两个开关NMOS管,实现过温保护功能。恒流驱动模块采用的方案能够有效降低恒流工作电压并实现利用外接电阻控制恒流输出的大小,驱动电流范围为54.26mA到258.24mA。当驱动电流为258.24mA时,恒流工作电压仅为0.35V。在LED电源电压正负变化10%范围内,驱动电流变化小于5%。温度传感模块利用PTAT(与绝对温度成正比)电压与基准电压比较,产生关断信号,关断温度在60℃~100℃范围内可由外接电阻设定。  相似文献   

2.
滞环电流控制的大功率LED恒流驱动芯片设计   总被引:3,自引:1,他引:3  
设计了一款滞环电流控制的大功率LED恒流驱动芯片,其采用高边电流检测方案,通过内部电流检测电路对LED驱动电流进行滞环控制,从而获得恒定的平均电流。芯片采用9VBICMOS工艺流片,可输出350mA电流驱动1W的LED,也可输出750mA电流驱动3W的LED。在4.5~9V输入电压范围内,芯片输出驱动电流变化小于3.5%。在环境温度从25°C变化到100°C时,芯片输出驱动电流变化小于5%。由于滞环电流控制环路存在自稳定性,芯片无需补偿电路。  相似文献   

3.
设计了一款降压型LED恒流驱动芯片的滞环控制电路.该芯片采用高边电流检测方案,运用滞环电流控制方法对驱动电流进行滞环控制,从而获得恒定的平均驱动电流.设计采用简单的设计理念实现恒流驱动,不需要复杂的电路分析,能实现精确的电流控制,且自身具有稳定性.芯片采用0.5μm 5V/18V/40V CDMOS工艺研制,电源电压范围为4.5V-28V,工作温度-40℃~125℃,可为LED提供恒定的350mA驱动电流,通过调节外部检测电阻,可调节恒定LED驱动电流.外部提供DIM信号,通过DIM的占空比来调节LED的亮度.Hspice仿真结果显示:LED驱动电流为滞环变化的三角波,恒流精度小于6.2%.  相似文献   

4.
洪静  王卫东 《电子器件》2013,36(4):465-468
为满足LED显示驱动芯片的要求,采用CSMC 0.5μm CMOS数模混合工艺,设计了LED恒流驱动电路。采用补偿网络与高精度电流镜,改善电路的瞬态响应并提高输出电流的精度。该电路可利用外接电阻调节恒流输出的大小,电流输出范围为3 mA~40 mA。利用Spectre在不同工艺角下对电路进行仿真,电源电压从4.5 V~5.5 V变化时,电流的最大变化率为1.62%;温度变化范围为-40℃~85℃时,最大温度系数为58.84×10-6,外接电压由2 V~6 V变化时,电流最大变化率为2.23%,驱动电路性能良好。  相似文献   

5.
介绍了一种LDO型串联大功率白光LED恒流驱动控制器的设计.该电路包括LDO、带隙基准电压源、反馈电路、电流传感取样电路、大功率驱动电路五个部分.芯片采用9 V供电,利用片内集成的LDO电路输出5 V电压,作为控制部分的电源电压.采用台积电0.35μm 2P4M N阱CMOS标准工艺完成设计.Spectre仿真结果表明,当电源电压在±10%之间跳变或环境温度在0℃~100℃之间变化时,芯片可为3 W白光LED提供350 mA恒定驱动电流,误差小于±0.5%,电源利用效率可达76.17%以上.  相似文献   

6.
大功率照明白光LED恒流驱动芯片设计   总被引:2,自引:0,他引:2  
基于0.6μm标准CMOS工艺,研究设计了一款大功率照明白光LED恒流驱动芯片,可为两路功率型LED分别提供恒定的350mA驱动电流。驱动电路的输出级大功率管采用蛇形栅结构的设计,在标准CMOS工艺线上实现了功率器件与控制电路的单片集成。采用单电源供电,最高输出功率可达3W以上;单电源电压在4~7V范围内,芯片能够实现良好的恒流驱动功能,驱动电流恒流失配度保持在3.09%以内;当标准5V电源有10%的变化时,驱动电流的变化可控制在1.42%之内,恒流失配度保持在2.84%以内;而当环境温度在10~90℃范围内变化,驱动电流最多增大1.75%,恒流失配度保持在3.15%以内。采用双电源供电时,芯片电源转换效率可达83%。  相似文献   

7.
武世明  曾以成  陶亮 《微电子学》2015,45(4):465-468, 473
基于0.5 μm CMOS工艺,设计了一种电流可随系统温度变化自适应调节的LED驱动电路。通过设计自适应调控模块,实现LED驱动可自适应工作于正常恒流输出、自适应调控输出、滞回关断保护三种状态。Spectre仿真结果表明,在0 ℃~80 ℃的正常温度范围内,350 mA的恒流驱动输出变化小于0.28%;电源电压在±10%的波动范围内,恒流输出波动小于1.8%;80 ℃~110 ℃间,调控输出驱动电流可调幅度为160 mA;111 ℃时,电路关断输出,直到温度降回70 ℃后,重新开启。该电路对热功耗的管理作用更加高效可靠,对于LED照明等领域的应用,较现有方案更为优越。  相似文献   

8.
脉宽调制型大功率LED恒流驱动芯片的研究   总被引:2,自引:0,他引:2  
基于0.6μm5V标准CMOS工艺,研究并设计了一种脉宽调制型大功率照明LED恒流驱动芯片为1W大功率照明LED灯提供350mA恒定的平均驱动电流。实现了在5V电源电压有10%跳变时,平均驱动电流的变化可被控制在4.5%以内。输出级开关MOS管采用高密度的版图结构使单位面积的有效宽长比与普通结构的MOS管相比提高了一倍。芯片的电源效率可达87%,与以前设计的串联饱和型半导体照明LED恒流驱动芯片[1]相比提高近25%。  相似文献   

9.
完成了一种降压型恒流LED驱动芯片的设计。采用迟滞控制模式以提高芯片工作时的瞬态响应速度;采用电阻分压式二阶曲率补偿方法设计出低温度系数和高电源抑制比的带隙基准电路;对导通时间与关断时间电路进行设计改进,使导通时间与关断时间均与输入电压有关,且相互抵消,从而使开关频率仅由负载和外接电阻决定,保证了开关频率的稳定,且可按需求选择。采用ASMC 0.5μm BCD 60V工艺,完成芯片的设计,流片测试结果表明:芯片可在10~40V的工作电压范围内提供350mA的恒定驱动电流,纹波为70mA;在输出电流为350mA、驱动3个LED时的输出效率高达90%,且在相同负载条件下,输出电流变化时,输出效率基本不变。  相似文献   

10.
王亚盛 《半导体光电》2005,26(5):455-457
设计了一种新型浮压恒流集成二极管,能够同时为几百个LED提供标准恒定工作电流.采用跟随浮压技术进行电路设计,保证多个LED串联时的工作电压在2~200V之间选择,恒定输出电流为10~500 mA,恒流温度漂移小于5μA/℃,满足各种LED照明工程中电源设计的需要.  相似文献   

11.
实现了一种具有超高电压输入、高精度、大调光范围、低成本的非隔离型LED恒流驱动芯片。芯片采用外接高压三极管的电压调整结构以及高精度基准电压源,以PWM峰值电流控制方式实现了高精度、高一致性的电流输出。芯片采用18 V耐压的工艺流片,实现输入电压范围从10 V达到450 V变化,电能转换效率高达92%,驱动电流可从几毫安到超过1 A间设定,电流精度和一致性可达1.5%。  相似文献   

12.
基于HHNEC 0.35μm 40 V BCD工艺,采用峰值电流检测模式的脉冲宽度调制方式,设计了一款能在8~42 V的输入电压范围内,-40~125℃的温度范围内正常工作的高转换效率、高输出电流精度的发光二极管(LED)驱动电路,版图面积为925.3μm×826.8μm。利用带负反馈的预稳压电路为基准源电路和线性稳压器提供稳定的工作电压,新颖求和型CMOS基准电流源提供低温漂、高精度的偏置电流,带预抑制电路的基准电压源提供高精度的参考电压,提高了输出电流的精度。仿真结果表明,在典型工艺角TT下,当输入电压为40 V,驱动9个LED,输出电流为400 mA时,该LED驱动电路转换效率为95.8%,输出电流精度为1.75%。  相似文献   

13.
Owing to the fact that the LED drive circuit must have constant output current control, we propose a controlled current driver with a high precision for the white light LED. Three discrete constant current settings are available and may be selected at the supply voltage from 2.9 V to 4.4 V, which is up to 1 A. An autozero transconductance amplifier is proposed, which effectively improves the precision, reduces the offset voltage and the noise. The variation in the ratio of the external resistor current to the LED load current is less than 2.3%, when the LED load current changes from 200 mA to 800 mA.  相似文献   

14.
肖倩倩  杨维明  鲍钰文 《半导体技术》2017,42(10):726-731,778
设计了一种负电荷泵低压差电流源白光LED驱动芯片.基于负电荷泵原理,消除了传统正电荷泵结构中电流调整晶体管和地焊盘的寄生电阻,电流调节模块中电流源的压降可以达到80 mV的超低压状态,降低了损耗.采用脉冲信号和使能端设计控制LED驱动电流,可在2.8~5 V工作电压内提供1.25~ 20 mA范围内16个不同的恒定驱动电流,实现LED灯的16级不同亮度的调光功能.电荷泵的输出纹波几乎不会影响LED的亮度与色差.采用CSMC 0.5 μmCMOS工艺完成了芯片的设计.流片测试结果显示,在芯片工作电压范围内,LED电流变化的最大差值为0.4 mA,测试效率达到89.3%,满足高效和稳定的应用要求.  相似文献   

15.
An LED driving circuit in accurate proportional current sampling mode is designed and fabricated based on CSMC 0.5 μm standard CMOS technology. It realizes accurate sensing of sampling current variation with output driving current. A better constant output current characteristic is achieved by using an amplifier to clamp the drain voltage of both the sampling MOSFET and power MOSFET to the same value with feedback control. Small signal equivalent circuit analysis shows that the small signal output resistance in the accurate proportional current sampling mode circuit is much larger than that in a traditional proportional current sampling mode circuit, and circuit stability could be assured. Circuit simulation and chip testing results show that when the LED driving current is 350 mA and the power supply is 6 V with ±10% variation, the stability of the output constant current of the accurate proportional current sampling mode LED driving 1C will show 41% improvement over that of a traditional proportional current sampling mode LED driving IC.  相似文献   

16.
基于降压型结构,设计了一种高精度的恒流LED驱动电路.在滞环控制模式的基础上,采用一种新型的自适应关断时间控制环路替代谷值检测反馈环路,间接地实现了对电感电流谷值的精确控制,避免了对谷值直接采样所带来的误差,提升了系统的恒流精度.控制环路采用低边采样方式,降低了采样电阻上的损耗,提升了系统的转换效率.该LED驱动电路基...  相似文献   

17.
针对滞环恒流大功率LED驱动芯片,提出一款高性能电流采样电路。该电路采用高压工艺,可承受最高达40 V的输入电压。通过分析滞环控制的特点,采用串联电阻采样技术,结合匹配电流源结构,在保证响应速度和采样精度的同时,降低了电路的复杂度。电路中加入输入电压补偿电路,进一步提高了恒流控制的精度。在Cadence下的仿真结果表明,电路可在800 kHz的频率下正常工作,采样精度达99.78%;当电压从15 V变化至35 V时平均负载电流误差为0.81%;输出电压范围为0~5 V。  相似文献   

18.
针对现有LED驱动电路存在电解电容限制寿命的不足,提出了一种无电解电容的LED驱动电路的设计方法。该方法采用Panasonic松下MIP553内置PFC可调光LED驱动电路的芯片,与外部非隔离底边斩波电路合成作为基本的电路结构,输出稳定的电流用以满足LED工作的需要。同时设计保护电路来保护负载。实验结果表明,控制器芯片能稳定工作,并且可以实现27 V的恒压输出和350 mA的恒流输出。  相似文献   

19.
恒流-恒压模式控制的锂电池充电器的设计   总被引:1,自引:0,他引:1  
徐静萍 《半导体技术》2011,36(4):291-295
设计了一款恒流-恒压充电模式控制的锂离子电池充电器,当电池电压低于2.9 V时,充电器提供涓流充电模式;当电池电压高于2.9 V时,充电器提供恒流充电模式;当电池电压达到4.2 V时,实现恒压充电模式对充电器的控制,充电电流减小。对主要子模块的电路进行了详细的设计与仿真并进行了稳定性分析,均能够在不采用任何补偿的情况下保持稳定。电路采用CSMC公司的0.6μm B iCMOS工艺模型,基于Cadence仿真平台对电路进行了前仿真,仿真结果表明,在5 V电源电压下,涓流充电电流为50 mA,恒流充电电流为502 mA,最终电池电压为4.202 V。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号