首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Cao D  Banerjee PP  Poon TC 《Applied optics》1998,37(14):3007-3014
Basic real-time programmable image-processing operations are accomplished by use of acousto-optic (AO) cells. Instead of frequency-plane filters, the AO cells are placed directly behind the object. The one-dimensional edge-enhancement results with one AO cell can be improved by use of two AO cells that are placed in tandem with contrapropagating sound. The dominant second-derivative operation obtained from the transfer function of the undiffracted order works like a one-dimensional Laplacian operator that enables improved edge enhancement.  相似文献   

2.
Effects of an electric or magnetic field on the radiolytic degradation of two biorefractory contaminants, Acid Orange 7 (AO7) and nitrobenzene (NB), were evaluated in this work. A continuous DC electric current with a low density (approximately 2.8-5.6 mA cm(-2)) applied during the radiolytic degradation of AO7 and NB solutions only led to slight enhancement in their degradation rate constants, but altered significantly the degradation mechanisms. On the other hand, application of a magnetic field (0.4 T) in irradiation processes slightly enhanced the degradation kinetics without leading to any change in degradation mechanisms.  相似文献   

3.
We study optical losses in the single-mode fiber system with an all-optical switch based on the anisotropic acousto-optic (AO) TeO(2) 2D deflector. It is shown, theoretically and experimentally, that the mismatch of the output-fiber mode profile and the switched optical beam shape depends significantly on the monochromaticity of the light beam and is determined by the frequency dispersion of the laser beam diffracted on a Bragg AO cell. A quantitative analysis of the dependence of the input optical losses on the spectral width of the light beam is presented.  相似文献   

4.
Riza NA  Yaqoob Z 《Applied optics》2003,42(16):3018-3026
A novel high-speed no-moving-parts optical coherence tomography (OCT) system is introduced that acquires sample data at less than a microsecond per data point sampling rate. The basic principle of the proposed OCT system relies on use of an acousto-optic deflector. This OCT system has the attractive features of an acousto-optic scanning heterodyne interferometer coupled with an acousto-optic (AO) variable optical delay line operating in a reflective mode. Fundamentally, OCT systems use a broadband light source for high axial resolution inside the sample or living tissue under examination. Inherently, AO devices are Bragg-mode wavelength-sensitive elements. We identify that two beams generated by a Bragg cell naturally have unbalanced and inverse spectrums with respect to each other. This mismatch in spectrums in turn violates the ideal autocorrelation condition for a high signal-to-noise ratio broadband interferometric sensor such as OCT. We solve this fundamental limitation of Bragg cell use for OCT by deploying a new interferometric architecture where the two interfering beams have the same power spectral profile over the bandwidth of the broadband source. With the proposed AO based system, high (e.g., megahertz) intermediate frequency can be generated for low 1/f noise heterodyne detection. System issues such as resolution, number of axial scans, and delay-path selection time are addressed. Experiments described demonstrate our high-speed acousto-optically tuned OCT system where optical delay lines can be selected at submicrosecond speeds.  相似文献   

5.
The fluorescence of acridine orange (AO) can be quenched significantly with addition of the single-wall carbon nanotubes (SWCNTs) solution, due to the formation of a hybrid complex between AO and SWCNTs. A fluorescence enhancement of approximately 18× can be observed after the addition of certain amount of DNA into the above mentioned solution. The fluorescence increase was linearly proportional to the amount of DNA added in the concentration range of 0–50.75 μM, and the DNA detection limit was down to 8.56 × 10−8 M. This method can be used to detect DNA in vitro.  相似文献   

6.
Dynamic behavior of an analog-to-digital converter (ADC) based on diffractive optical element(s) (DOE)(s) was studied and found to be in agreement with predictions. The analog signal was translated to an angular deflection of a laser beam by means of an acousto-optic (AO) cell. The number of bits in this experimental demonstration was three, using an eight-element DOE array. The maximum sample rate was found to be 2.5 MS/s, the limiting factor being the transit time for the acoustic wave across the width of the laser beam in the AO cell. The study is intended as a first dynamic demonstration of a proposed ADC scheme previously demonstrated in a quasi-static version. The full potential of the ADC scheme will require the use of a fast tunable diode laser to replace the AO deflection scheme used here.  相似文献   

7.
聚合物材料表面原子氧防护技术的研究进展   总被引:1,自引:0,他引:1  
聚合物材料具有质量轻、强度高等优点, 常被用作航天器表面的复合结构基材。原子氧是低地球轨道空间中成分含量最高的粒子之一, 对暴露在航天器表面的聚合物材料易形成大通量、高能量轰击, 造成其表面氧化侵蚀和质量损失, 使聚合物材料的性能发生不同程度的衰退, 也是导致航天器件可靠性降低、工作寿命缩短的主要环境因素。本文对当前国内外通用的几种聚合物材料表面原子氧防护技术进行了整理归纳, 其中表面化学改性方法结合了体材改性和常用防护涂层的优点, 得到的有机/无机复合改性防护层具有较好的综合防护性能。文中分析了近年来由计算模拟法开展原子氧与表面防护材料相关作用机理的研究, 指出采用计算模拟结合试验的研究方法, 有可能从本质上揭示复合改性层与原子氧的作用机理, 从而促进原子氧防护材料与防护技术的研究发展。  相似文献   

8.
The combination of shot blasting (SB) and micro-arc oxidation (or anodic oxidation—AO) in titanium surfaces was shown to provide enhanced conditions for cell differentiation and osseointegration than those provided by SB or AO alone. This study associated both methods aiming to attain titania layers on Ti with adequate tribo-mechanical features for bone implants. SB was performed using alumina particles, and titania layers were grown by AO using a CaP-based electrolyte. Mechanical properties and scratch resistance were characterized at nanoscale by instrumented indentation and nanoscratch, and correlated with morphological and microstructural changes (XRD, SEM, EDS, AFM, and profilometry). Analytical methods were employed to correct roughness and substrate effects on the indentation results. CaP-containing TiO2 layers were produced on AO and SB + AO. The latter presented small pore size and inhomogeneous layer thickness and Ca/P ratios, caused by the non-uniform surface straining by SB that affects the oxide growth kinetics in the electrochemical process. Elastic modulus of SB + AO layer (37 GPa) were lower than the AO one (45 GPa); both of them were smaller than bulk Ti (130 GPa) and close to bone values. The hardness profiles of AO and SB + AO were similar to the substrate ones. Because of the improved load bearing capacity and unique layer features, the critical load to remove the SB + AO titania coating in scratch tests was three times as much or higher than in AO. Results indicate improved mechanical biocompatibility and tribological strength of anodic titania layers grown on sand blasted Ti surfaces.  相似文献   

9.
Spatial-frequency domain techniques have traditionally been applied to obtain estimates for the independent effects of a variety of individual error sources in adaptive optics (AO). Overall system performance is sometimes estimated by introducing the approximation that these individual error terms are statistically independent, so that their magnitudes may be summed in quadrature. More accurate evaluation methods that account for the correlations between the individual error sources have required Monte Carlo simulations or large matrix calculations that can take much longer to compute, particularly as the order of the AO system increases beyond a few hundred degrees of freedom. We describe an approach to evaluating AO system performance in the spatial-frequency domain that is relatively computationally efficient but still accounts for many of the interactions between the fundamental error sources in AO. We exploit the fact that (in the limits of an infinite aperture and geometrical optics) all the basic wave-front propagation, sensing, and correction processes that describe the behavior of an AO system are spatial-filtering operations in the Fourier domain. Essentially all classical wave-front control algorithms and evaluation formulas are expressed in terms of these filters and may therefore be evaluated one spatial-frequency component at a time. Performance estimates for very-high-order AO systems may be obtained in 1 to 2 orders of magnitude less time than needed when detailed simulations or analytical models in the spatial domain are used, with a relative discrepancy of 5% to 10% for typical sample problems.  相似文献   

10.
We have studied the acousto-optic (AO) diffraction in Sn2P2S6 crystals and found that they manifest high values of an AO figure of merit. The above crystals may therefore be used as highly efficient materials in different AO applications.  相似文献   

11.
We have developed a compact, multimodal instrument for simultaneous acquisition of en face quasi-confocal fundus images and adaptive-optics (AO) spectral-domain optical coherence tomography (SDOCT) cross-sectional images. The optical system including all AO and SDOCT components occupies a 60x60 cm breadboard that can be readily transported for clinical applications. The AO component combines a Hartmann-Shack wavefront sensor and a microelectromechanical systems-based deformable mirror to sense and correct ocular aberrations at 15 Hz with a maximum stroke of 4 microm. A broadband superluminescent diode source provides 4 mum depth resolution for SDOCT imaging. In human volunteer testing, we observed up to an 8 dB increase in OCT signal and a corresponding lateral resolution of <10 microm as a result of AO correction.  相似文献   

12.
Atomic oxygen (AO) is a dominant component of the low earth orbit and can erode most spacecraft material. We demonstrated the application of graphene to enhance AO erosion resistance of spacecraft polymers. Graphene-reinforced epoxy resin nanocomposites were prepared by solidification of epoxy resin in solution with dispersed graphene flakes and their AO erosion resistance was investigated in a plasma-type ground-based AO effects simulation facility. The nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. Results based on erosion kinetics revealed that a 46 % decrease in mass loss and a 47 % decrease in erosion yield were achieved by addition of only 0.5 wt% of graphene. Further analysis of the surface morphology and composition showed that the graphene nanoflakes could serve as barriers to protect underneath from AO erosion. Thus, this approach provides a novel route for improving durability and reliability of spacecraft material, especially polymers.  相似文献   

13.
The European Southern Observatory (ESO) is studying the next generation giant telescope, called the European Extremely Large Telescope (E-ELT). With a 42?m diameter primary mirror, it is a significant step from currently existing telescopes. Therefore, the E-ELT with its instruments poses new challenges in terms of cost and computational complexity for the control system, including its adaptive optics (AO). Since the conventional matrix-vector multiplication (MVM) method successfully used so far for AO wavefront reconstruction cannot be efficiently scaled to the size of the AO systems on the E-ELT, faster algorithms are needed. Among those recently developed wavefront reconstruction algorithms, three are studied in this paper from the point of view of design, implementation, and absolute speed on three multicore multi-CPU platforms. We focus on a single-conjugate AO system for the E-ELT. The algorithms are the MVM, the Fourier transform reconstructor (FTR), and the fractal iterative method (FRiM). This study enhances the scaling of these algorithms with an increasing number of CPUs involved in the computation. We discuss implementation strategies, depending on various CPU architecture constraints, and we present the first quantitative execution times so far at the E-ELT scale. MVM suffers from a large computational burden, making the current computing platform undersized to reach timings short enough for AO wavefront reconstruction. In our study, the FTR provides currently the fastest reconstruction. FRiM is a recently developed algorithm, and several strategies are investigated and presented here in order to implement it for real-time AO wavefront reconstruction, and to optimize its execution time. The difficulty to parallelize the algorithm in such architecture is enhanced. We also show that FRiM can provide interesting scalability using a sparse matrix approach.  相似文献   

14.
Banerjee PP  Cao D  Poon TC 《Applied optics》1998,37(32):7532-7537
The role of acousto-optic (AO) modulators in programmable real-time image processing has recently been demonstrated. For fully investigating the image-processing capabilities of the AO modulator, general techniques to derive spatial transfer functions are needed for a variety of physical situations. We develop a technique to determine the spatial transfer functions numerically for various cases of beam incidence on an AO modulator. Normal incidence and incidence at twice the Bragg angle are investigated as examples for which double-sided and single-sided notch spatial filtering, respectively, are achieved. The observed spatial-filtering characteristics are reconciled with simple intuitive physical arguments.  相似文献   

15.
Performance of the Keck Observatory adaptive-optics system   总被引:3,自引:0,他引:3  
The adaptive-optics (AO) system at the W. M. Keck Observatory is characterized. We calculate the error budget of the Keck AO system operating in natural guide star mode with a near-infrared imaging camera. The measurement noise and bandwidth errors are obtained by modeling the control loops and recording residual centroids. Results of sky performance tests are presented: The AO system is shown to deliver images with average Strehl ratios of as much as 0.37 at 1.58 microm when a bright guide star is used and of 0.19 for a magnitude 12 star. The images are consistent with the predicted wave-front error based on our error budget estimates.  相似文献   

16.
Tyler DW  Ellerbroek BL 《Applied optics》1998,37(21):4569-4576
We use numerical calculations to examine the relation between adaptive optics (AO) turbulence compensation and power coupled through a spectrometer slit for both laser and natural guide-star AO systems. The AO system and observing parameters used are relevant to the Gemini-North 8-m telescope. For this study, we separate residual tilt from residual higher-order aberrations to isolate their relative effects under a variety of operating conditions. Our results demonstrate that slit-coupled intensity is not uniquely determined by system Strehl alone; we show that this is due to the differing effects of higher-order and tilt aberrations on the shape of the compensated point-spread function. For the Gemini spectrometer and AO system, the wider point-spread function halo associated with an added residual higher-order aberration reduces slit-coupled intensity more rapidly than a broad point-spread function core induced by residual tilt.  相似文献   

17.
Adaptive optics (AO) retinal images are limited by anisoplanatism; wavefront shape varies across the field of view such that only a limited area can achieve diffraction-limited image quality at one time. We explored three alternative AO modalities designed to reduce this effect, drawn from work in astronomy. Optical design analysis and computer modeling was undertaken to predict the benefit of each modality for various schematic eyes and various complexities of the imaging system. Off-axis performance was found to be limited by system parameters and not by the eye itself, due to the inherent off-axis characteristics of the eye's gradient index lens. This rendered the alternative AO modalities ineffectual compared with conventional AO but did suggest several methods by which anisoplanatism may be reduced by altering the design of conventional AO systems. Several of these design possibilities were explored with further modeling. The best-performing method involved the replacement of system lenses with gradient index versions inspired by the human eye lens. Mirror-based relay optics also demonstrated good off-axis performance, but their advantage was lost in regions of the system suffering from uncorrected higher-order aberration. Incorporating "off-the-plane" beam deviations ameliorated this loss substantially. In this work we also show, to our knowledge for the first time, that the ideal location of a single AO corrector need not lie in the pupil plane.  相似文献   

18.
The linear quadratic Gaussian regulator provides the minimum-variance control solution for a linear time-invariant system. For adaptive optics (AO) applications, under the hypothesis of a deformable mirror with instantaneous response, such a controller boils down to a minimum-variance phase estimator (a Kalman filter) and a projection onto the mirror space. The Kalman filter gain can be computed by solving an algebraic Riccati matrix equation, whose computational complexity grows very quickly with the size of the telescope aperture. This "curse of dimensionality" makes the standard solvers for Riccati equations very slow in the case of extremely large telescopes. In this article, we propose a way of computing the Kalman gain for AO systems by means of an approximation that considers the turbulence phase screen as the cropped version of an infinite-size screen. We demonstrate the advantages of the methods for both off- and on-line computational time, and we evaluate its performance for classical AO as well as for wide-field tomographic AO with multiple natural guide stars. Simulation results are reported.  相似文献   

19.
Carbon and nitrogen (C-N) co-doped nano-CeO2 was synthesized by the solvothermal method using hexamethylenetetramine (HMT) as a precipitator at 140 degrees C for 24 h. We found that the degradation of acid orange 7 (AO7) was 94.4% and 98.8% with C-N co-doped nano-CeO2 upon irradiation with a 100-watt high-pressure mercury lamp (HML) and a 10-watt compact fluorescent lamp (CFL), respectively. By comparison, TiO2 degraded 68.4% and 43.0% of the AO7 irradiated by HML and CFL, respectively. We found that the degradation efficiencies of AO7 upon irradiation with the 10-watt CFL in the presence of the samples synthesized using different precipitators decreased as follows: CeO2(HMT)> CeO2-TiO2(HMT) > TiO2(HMT) > CeO2(NaHCO3) > CeO2(Na2CO3).  相似文献   

20.
Gao Q  Jiang Z  Yi S  Xie W  Liao T 《Applied optics》2012,51(17):3922-3929
We describe an adaptive optics (AO) system for correcting the aero-optical aberration of the supersonic mixing layer and test its performance with numerical simulations. The AO system is based on the measurement of distributed Strehl ratios and the stochastic parallel gradient descent (SPGD) algorithm. The aero-optical aberration is computed by the direct numerical simulation of a two-dimensional supersonic mixing layer. When the SPGD algorithm is applied directly, the AO cannot give effective corrections. This paper suggests two strategies to improve the performance of the SPGD algorithm for use in aero-optics. The first one is using an iteration process keeping finite memory, and the second is based on the frozen hypothesis. With these modifications, the performance of AO is improved and the aero-optical aberration can be corrected to some noticeable extent. The possibility of experimental implementation is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号