首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Visible and near infrared (Vis/NIR) spectroscopy was investigated to determine the soluble solids content (SSC), pH and firmness of different varieties of pears. Two-hundred forty samples (80 for each variety) were selected as sample set. Two-hundred ten pear samples (70 for each variety) were selected randomly for the calibration set, and the remaining 30 samples (10 for each variety) for the validation set. Partial least squares (PLS) and least squares-support vector machine (LS-SVM) with different spectral preprocessing techniques were implemented for calibration models. Different wavelength regions including Vis, NIR and Vis/NIR were compared. It indicated that Vis/NIR (400–1800 nm) was optimal for PLS and LS-SVM models. Then, LS-SVM models were developed with a grid search technique and RBF kernel function. All LS-SVM models outperformed PLS models. Next, effective wavelengths (EWs) were selected according to regression coefficients. The EW-LS-SVM models were developed and a good prediction precision and stability was achieved compared with PLS and LV-LS-SVM models. The correlation coefficient of prediction (rp), root mean square error of prediction (RMSEP) and bias for the best prediction by EW-LS-SVM were 0.9164, 0.2506 and −0.0476 for SSC, 0.8809, 0.0579 and −0.0025 for pH, whereas 0.8912, 0.6247 and −0.2713 for firmness, respectively. The overall results indicated that the regression coefficient was an effective way for the selection of effective wavelengths. LS-SVM was superior to the conventional linear PLS method in predicting SSC, pH and firmness in pears. Therefore, non-linear models may be a better alternative to monitor internal quality of fruits. And the EW-LS-SVM could be very helpful for development of portable instrument or real-time monitoring of the quality of pears.  相似文献   

2.
Near-infrared (NIR) spectroscopy was investigated to determine the acetic, tartaric, formic acids and pH of fruit vinegars. Optimal partial least squares (PLS) models were developed with different preprocessing. Simultaneously, the performance of least squares-support vector machine (LS-SVM) models was compared with three kinds of inputs, including wavelet transform (WT), latent variables, and effective wavelengths (EWs). The results indicated that all LS-SVM models outperformed PLS models. The optimal correlation coefficient (r), root mean square error of prediction and bias for validation set were 0.9997, 0.3534, and −0.0110 for acetic acid by WT-LS-SVM; 0.9985, 0.1906, and 0.0025 for tartaric acid by WT-LS-SVM; 0.9987, 0.1734, and 0.0012 for formic acid by EW-LS-SVM; and 0.9996, 0.0842, and 0.0012 for pH by WT-LS-SVM, respectively. The results indicated that NIR spectroscopy (7,800–4,000 cm−1) combined with LS-SVM could be utilized as a precision method for the determination of organic acids and pH of fruit vinegars.  相似文献   

3.
利用近红外光谱技术对苹果原醋中的重要指标进行定量分析,并进行模型优化以提高性能。采用遗传偏最小二乘法(GA-PLS)提取的特征波长作为最小二乘支持向量机(LS-SVM)的输入变量,先后建立苹果原醋中总酸、可溶性固形物的近红外定量模型,并与建立的偏最小二乘(PLS)模型结果进行比较。用决定系数(R2)、预测均方根误差(RMSEP)以及相对分析误差(RPD)对模型进行评价,确定最佳建模方法。结果表明,相比于PLS模型,总酸及可溶性固形物指标的LS-SVM定量模型的R2、RMSEP以及RPD值均有更好的表现,且在进行独立测试集验证时,LS-SVM模型的预测精度也明显优于PLS模型。说明遗传算法联合LS-SVM建立的定量模型有很高的准确度及稳定性,可以应用于苹果原醋总酸和可溶性固形物含量的快速检测。  相似文献   

4.
Two sensitive wavelength (SWs) selection methods combined with visible/near-infrared (Vis/NIR) spectroscopy were investigated to determine the soluble solids content (SSC) and pH value in peaches, including latent variables analysis (LVA) and independent component analysis (ICA). A total of 100 samples were prepared for the calibration (n = 70) and prediction (n = 30) sets. Calibration models using SWs selected by LVA and ICA were developed, including linear regression of partial least squares (PLS) analysis and nonlinear regression of least squares-support vector machine (LS-SVM). In the nonlinear models, four SWs selected by ICA achieved the optimal ICA-LS-SVM model compared with LV-LS-SVM and both of them better than linear model of PLS. The correlation coefficients (r p and r cv), root mean square error of cross validation, root mean square error of prediction, and bias by ICA-LS-SVM were 0.9537, 0.9485, 0.4231, 0.4155, and 0.0167 for SSC and 0.9638, 0.9657, 0.0472, 0.0497, and −0.0082 for pH value, respectively. The overall results indicated that ICA was a powerful way for the selection of SWs, and Vis/NIR spectroscopy incorporated to ICA-LS-SVM was successful for the accurate determination of SSC and pH value in peach.  相似文献   

5.
利用近红外光谱技术实现对白酒发酵过程中酒醅主要成分的质量控制,并进行模型优化,提高性能。采用偏最小二乘法提取的潜在变量作为最小二乘支持向量机的输入变量,先后建立了白酒酒醅中酒精度、淀粉、水分、酸度的近红外定量模型,并与经无信息变量消除法波段筛选后建立的偏最小二乘模型结果进行比较。结果表明:与偏最小二乘模型相比,4 个指标的最小二乘支持向量机定量模型的相关系数(R2)、预测均方根误差以及相对分析误差3 个评价参数均有更优表现;对未知样品进行预测时,最小二乘支持向量机模型的预测准确度明显高于偏最小二乘模型。说明最小二乘支持向量机模型的准确度、稳定性及预测性能均优于偏最小二乘法模型,为白酒酒醅的品质分析方法研究提供了新的思路。  相似文献   

6.
草莓可溶性固形物(soluble solids content,SSC)含量是评价草莓内部品质的关键指标。为了实现对该指标的快速、无损评估,基于近红外光谱技术,构建了线性偏最小二乘(partial least squares,PLS)和非线性最小二乘支持向量机(least squares support vector machine,LS-SVM)模型,联合蒙特卡罗无信息变量消除和连续投影算法(Monte-Carlo uninformative variable elimination,successive projections algorithm,MC-UVE-SPA)从原始光谱4254个变量中提取了27个有效变量,并构建了基于有效变量的定量分析模型。同时,考虑到草莓表面颜色的影响,基于草莓RGB图像各分量获取了颜色特征参数,进一步融合光谱和颜色特征构建了多参数融合PLS和LS-SVM模型。基于相同的校正集和预测集,比较了所有模型对草莓内部SSC的预测性能。结果表明,MC-UVESPA是一种有效的草莓光谱变量选择算法,且多参数融合非线性LS-SVM模型是草莓内部SSC定量预测的最优模型。针对预测集样本,该模型相关系数RP和预测均方根误差(root mean square error of prediction,RMSEP)分别为0.9885和0.1532。该研究为基于近红外光谱技术的草莓可溶性固形物含量检测便携式仪器和在线检测设备研发奠定了基础。  相似文献   

7.
More than 3.2 million litres of vinegar is consumed every day in China. There are many types of vinegar in China. How to control the quality of vinegar is problem. Near infrared spectroscopy (NIR) transmission technique was applied to achieve this purpose. Ninety-five vinegar samples from 14 origins covering 11 provinces in China were collected. They were classified into mature vinegar, aromatic vinegar, rice vinegar, fruit vinegar, and white vinegar. Fruit vinegar and white vinegar were separated from the other traditional categories in the two-dimension principal component space of NIR after principle component analysis (PCA). Least-squares support vector machine (LS-SVM) as the pattern recognition was firstly applied to identify mature vinegar, aromatic vinegar, rice vinegar in this study. The top two principal components (PCs) were extracted as the input of LS-SVM classifiers by principal component analysis (PCA). The best experimental results were obtained using the radial basis function (RBF) LS-SVM classifier with σ = 0.8. The accuracies of identification were more than 85% for three traditional vinegar categories. Compared with the back propagation artificial neural network (BP-ANN) approach, LS-SVM algorithm showed its excellent generalisation for identification results. As total acid content (TAC) is highly connecting with the quality of vinegar, NIR was used to prediction the TAC of samples. LS-SVM was applied to building the TAC prediction model based on spectral transmission rate. Compared with partial least-square (PLS) model, LS-SVM model gave better precision and accuracy in predicting TAC. The determination coefficient for prediction (Rp) of the LS-SVM model was 0.919 and root mean square error for prediction (RMSEP) was 0.3226. This work demonstrated that near infrared spectroscopy technique coupled with LS-SVM could be used as a quality control method for vinegar.  相似文献   

8.
Visible/near infrared spectroscopy (Vis/NIRs) technique was applied to non-destructive quantification of sugar and pH value in yogurt. Partial least squares (PLS) analysis and least squares support vector machine (LS-SVM) were implemented for calibration models. In this paper, three brands (Mengniu, Junyao, and Guangming) were set as the calibration, and the remaining two brands (Yili and Shuangfeng) were used as prediction set. In the LS-SVM model, the correlation coefficient (r), root mean square error of prediction, and bias in prediction set were 0.9427, 0.2621°Brix, 1.804e−09 for soluble solids content, and 0.9208, 0.0327, and 1.094e−09 for pH, respectively. The correlation spectra corresponding to the soluble solids content and pH value of yogurt were also analyzed through PLS method. LS-SVM model was better than PLS models for the measurements of soluble solids content and pH value. The results showed that the Vis/NIRs combined with LS-SVM models could predict the soluble solids content and pH value of yogurt.  相似文献   

9.
Visible and near infrared (Vis/NIR) spectroscopy was investigated to determine the acetic, tartaric and lactic acids of plum vinegar based on a newly proposed combination of successive projections algorithm-least squares-support vector machine (SPA-LS-SVM). SPA, compared with regression coefficients (RC), was applied to select effective wavelengths (EWs) with least collinearity and redundancies. Five concentration levels (100%, 80%, 60%, 40% and 20%) of plum vinegar were studied. Multiple linear regression (MLR) and partial least squares (PLS) models were developed for comparison. The results indicated that SPA-LS-SVM achieved the optimal performance for three acids comparing with full-spectrum PLS, SPA-MLR, SPA-PLS, RC-PLS and RC-LS-SVM. The root mean square error of prediction (RMSEP) was 0.3581, 0.0714 and 0.0201 for acetic, tartaric and lactic acids, respectively. The overall results indicated that Vis/NIR spectroscopy incorporated to SPA-LS-SVM could be applied as an alternative fast and accurate method for the determination of organic acids of plum vinegars.  相似文献   

10.
岳绒  郭文川  刘卉 《食品科学》2011,32(10):141-144
研究贮藏期间损伤猕猴桃内部品质与其近红外漫反射光谱之间的关系。利用近红外光谱(12000~4000cm-1)技术和多元线性回归(multiple linear regression,MLR)、主成分回归(principal component regression,PCR)和偏最小二乘法(partial least squares,PLS)3种校正方法分别对损伤华优猕猴桃在2℃条件下贮藏4周期间的可溶性固形物含量、pH值和硬度进行定量分析;并对比吸光度原始光谱、一阶微分和二阶微分3种不同预处理方法的PLS模型校正结果。结果表明:一阶微分预处理方法时,应用PLS建立的可溶性固形物含量、pH值和硬度校正模型的效果最佳;预测集样品预测值与测量值之间的相关系数分别为0.812、0.703、0.919,预测均方根误差分别为0.749、0.153、1.700。说明应用近红外漫反射技术检测贮藏期间损伤猕猴桃的内部品质是可行的。  相似文献   

11.
可溶性固形物含量(SSC)是食品行业的重要技术参数之一。利用近红外光谱技术对不同醋龄的老陈醋SSC进行分析。在不同光谱预处理下,分别采用主成分回归(PCR)和偏最小二乘法(PLS)建立SSC的定量分析模型。结果表明,采用5点平滑预处理后,利用PLS建立的老陈醋SSC的定量分析模型最优,其校正集的相关系数R为0.999 9,校正标准偏差(RMSEC)为0.038 3,预测标准偏差(RMSEP)和交叉验证标准偏差(RMSECV)分别为0.082 1,0.096 4。表明采用近红外光谱技术对不同醋龄的老陈醋SSC进行定量分析建模是可行的。  相似文献   

12.
目的应用近红外光谱技术建立海参产地区分和胶原蛋白快速检测的方法。方法总计43个海参样品来自大连、福建、连云港、山东4个地区。首先采集样品的近红外光谱图,经过标准正态变量(standard normal variables,SNV)预处理,利用不同定性判别模型对海参产地进行区分。通过分光光度计法测定海参的胶原蛋白含量,利用偏最小二乘法(partial least squares,PLS)、区间偏最小二乘法(interval partial least squares,iPLS)、向后区间偏最小二乘法(backwards interval partial least squares,BiPLS)和联合区间偏最小二乘法(synergy interval partial least squares,Si PLS)建立了海参胶原蛋白含量的预测模型。结果产地区分模型中最小二乘支持向量机(least-squares support vector machine regression,LS-SVM)的识别率最高,校正集识别率为100%,预测集识别率为95.35%;海参胶原蛋白预测模型中BiPLS的预测效果较好,校正集相关系数Rc为0.9002,预测集相关系数Rp为0.8517。结论近红外光谱技术可实现对海参的产地区分和胶原蛋白的快速检测。  相似文献   

13.
基于实验室自行搭建的可见-近红外光谱系统,以市售生鲜紫薯为研究对象,探讨其花青素、可溶性固形物(soluble solid contents,SSC)以及总糖(total sugars,TS)的同时快速无损检测方法。对紫薯原始光谱进行SG(Savitzky-Golay)平滑、标准正态变量变换以及一阶求导预处理,然后用偏最小二乘回归法进行建模分析。对于花青素和TS,经SG平滑结合一阶求导预处理的模型预测效果最佳;对于SSC,经SNV预处理的模型预测效果最好。针对紫薯各参数最佳预处理光谱采用竞争性自适应加权算法进行波长筛选,再次建立模型。花青素模型预测集的相关系数为0.942 1,预测均方根误差(root mean square error of prediction,RMSEP)为0.225?9?mg/g;SSC模型预测集相关系数为0.943?1,RMSEP为0.878?7?°Brix;TS模型预测集的相关系数为0.925?3,RMSEP为0.244?3%。结果显示,利用可见-近红外光谱可以实现对生鲜紫薯的花青素、SSC以及TS的同时快速无损检测,对生鲜紫薯品质的快速无损检测分选有着重要的实用意义。  相似文献   

14.
The estimation of nitrogen status non-destructively in rice was performed using canopy spectral reflectance with visible and near-infrared reflectance (Vis/NIR) spectroscopy. The canopy spectral reflectance of rice grown with different levels of nitrogen inputs was determined at several important growth stages. This study was conducted at the experiment farm of Zhejiang University, Hangzhou, China. The soil plant analysis development (SPAD) value was used as a reference data that indirectly reflects nitrogen status in rice. A total of 64 rice samples were used for Vis/NIR spectroscopy at 325–1075 nm using a field spectroradiometer, and chemometrics of partial least square (PLS) was used for regression. The correlation coefficient (r), root mean square error of prediction, and bias in prediction set by PLS were, respectively, 0.8545, 0.7628, and 0.0521 for SPAD value prediction in tillering stage, 0.9082, 0.4452, and −0.0109 in booting stage, and 0.8632, 0.7469, and 0.0324 in heading stage. Least squares support vector machine (LS-SVM) model was compared with PLS and back propagation neural network methods. The results showed that LS-SVM was superior to the conventional linear and non-linear methods in predicting SPAD values of rice. Independent component analysis was executed to select several sensitive wavelengths (SWs) based on loading weights; the optimal LS-SVM model was achieved with SWs of 560, 575–580, 700, 730, and 740 nm for SPAD value prediction in booting stage. It is concluded that Vis/NIR spectroscopy combined with LS-SVM regression method is a promising technique to monitor nitrogen status in rice.  相似文献   

15.
The potential of near-infrared (NIR) transmittance spectroscopy to nondestructively detect soluble solids content (SSC) and pH in tomato juices was investigated. A total of 200 tomato juice samples were used for NIR spectroscopy analysis at 800–2400 nm using an FT-NIR spectrometer. Multiplicative signal correction (MSC), and the first and second derivative were applied for pre-processing spectral data. The relationship between SSC, pH, and FT-NIR spectra of tomato juice were analyzed via partial least-squares (PLS) regression. PLS regression models were able to predict SSC and pH in tomato juices. The r c, RMSEC, RMSEP, and RMSECV for SSC were 0.92, 0.0703°Brix, 0.150°Brix, and 0.138°Brix, respectively, whereas those values for pH were 0.90, 0.0333, 0.0316, and 0.0489, respectively. It is concluded that the combination of NIR transmittance spectroscopy and PLS methods can be used to provide a technique of convenient, versatile, and rapid analysis for SSC and pH in tomato juices.  相似文献   

16.
The use of spectral measurements using either UV, visible (VIS), or near-infrared (NIR) spectroscopy to characterize wines or to predict wine chemical composition has been extensively reported. However, little is known about the effect of path length on the UV, VIS, and NIR spectrum of wine and the subsequent effect on the performance of calibrations used to measure chemical composition. Several parameters influence the spectra of organic molecules in the NIR region, with path length and temperature being one of the most important factors affecting the intensity of the absorptions. In this study, the effect of path length on the standard error of UV, VIS, and NIR calibration models to predict phenolic compounds was evaluated. Nineteen red and 13 white wines were analyzed in the UV, VIS, and NIR regions (200–2500 nm) in transmission mode using two effective path lengths 0.1 and 1 mm. Principal component analysis (PCA) and partial least squares (PLS) regression models were developed using full cross validation (leave-one-out). These models were used to interpret the spectra and to develop calibrations for phenolic compounds. These results indicated that path length has an effect on the standard error of cross validation (SECV) absolute values obtained for the PLS calibration models used to predict phenolic compounds in both red and white wines. However, no statistically significant differences were observed (p > 0.05). The practical implication of this study was that the path length of scanning for wines has an effect on the calibration accuracies; however, they are non-statistically different. Main differences were observed in the PCA score plot. Overall, well-defined protocols need to be defined for routine use of these methods in research and by the industry.  相似文献   

17.
In this study, wavelet textural analysis was applied to hyperspectral images in the visible and near-infrared (VIS/NIR) region (400–1,000 nm) for differentiation between fresh and frozen–thawed pork. The spectral data of acquired hyperspectral images were analyzed using partial least squares (PLS) regression and five wavelengths (462, 488, 611, 629, and 678 nm) were selected as the feature wavelengths by the regression coefficients from the PLS model. The fourth-order daubechies wavelet (“db4”) was used to serve as the wavelet mother function for wavelet textural extraction of the feature images at the above selected feature wavelengths with the wavelet decomposition level from 1 to 4. Four textural features were calculated in the horizontal, vertical, and diagonal orientations at each level. Forty-eight textural features were extracted from each feature image and used to differentiate between fresh and frozen–thawed pork samples by least-squares support vector machine (LS-SVM) model. Wavelet texture extracted from all five feature images at first decomposition level was identified as optimal wavelet texture combination, resulting in the highest classification accuracy for the LS-SVM models (98.48 % for the training set and 93.18 % for the testing set). Based on the texture combination, the quality attributes of pork meat could be predicted with correlation coefficients of calibration (r c ) of 0.982 and 0.913, and correlation coefficients of prediction (r p ) of 0.845 and 0.711 for pH and thawing loss, respectively. The results showed the possibility of developing a fast and reliable hyperspectral system for discrimination between fresh and frozen–thawed pork samples based on wavelet texture in the VIS/NIR wavelength range.  相似文献   

18.
Visible (VIS) and near infrared (NIR) spectroscopy combined with chemometrics was used in an attempt to classify commercial Riesling wines from different countries (Australia, New Zealand, France and Germany). Commercial Riesling wines (n = 50) were scanned in the VIS and NIR regions (400–2500 nm) in a monochromator instrument, in transmission mode. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and stepwise linear discriminant analysis (SLDA) based on PCA scores were used to classify Riesling wines according to their country of origin. Full cross validation (leave-one-out) was used as the validation method when classification models were developed. PLS-DA models correctly classified 97.5%, 80% and 70.5% of the Australian, New Zealand and European (France and Germany) Riesling wines, respectively. SLDA calibration models correctly classified 86%, 67%, 67% and 87.5% of the Australian, New Zealand, French and German Riesling wines, respectively. These results demonstrated that the VIS and NIR spectra contain information that when used with chemometrics allow discrimination between wines from different countries. To further validate the ability of VIS–NIR to classify white wine samples, a larger sample set will be required.  相似文献   

19.
为提高校正模型的预测精度,以烟草中淀粉近红外光谱(NIR)校正模型为研究对象,分别利用全光谱波段(FS)、方差光谱(VS)筛选光谱变量和遗传算法(GA)筛选光谱波长,结合偏最小二乘法建立校正模型(FS+PLS、VS+PLS和GA+PLS),并对100个初烤烟叶样品进行了预测。结果显示:①FS+PLS(变量数1557个)、VS+PLS(变量数781个)和GA+PLS(变量数72个)3种校正模型的决定系数Rc2、交互验证均方根误差(RMSECV)分别为0.9764、0.433,0.9871、0.332和0.9885、0.314。②与FS+PLS和VS+PLS模型相比,GA+PLS模型的光谱变量数分别减少为FS和VS变量数的4.62%和9.22%,主因子数由15降至12,Rc2明显提高,RMSECV显著降低。③FS+PLS、VS+PLS和GA+PLS模型对100个初烤烟叶样品的预测结果显示,Rp2、预测均方根误差(RMSEP)分别为0.9652、0.780,0.9843、0.501和0.9853、0.496,预测值与其对应的化学检测值之间通过配对T检验,显著性Sig.值、T值和平均相对误差(%)分别为0.271、1.107、17.48%,0.973、0.034、13.13%和0.722、0.357、13.12%,3种方法所建立校正模型的预测值与检测值之间均无显著性差异,模型预测精度(RSD)分别为10.34%、6.98%和4.76%。基于逐步优化光谱信息法建立的GA+PLS校正模型的预测精度优于FS+PLS和VS+PLS模型,该方法对于提高复杂化学体系模型的精度有参考意义。   相似文献   

20.
Informative variable selection or wavelength selection plays an important role in the quantitative analysis of near-infrared (NIR) spectra because the modern spectroscopy instrumentations usually have a high resolution and the obtained spectral data sets may have thousands of variables and hundreds or thousands of samples. In this study, a new combination of Monte Carlo–uninformative variable elimination (MC-UVE) and successive projections algorithm (SPA; MC-UVE-SPA) was proposed to select the most effective variables. MC-UVE was firstly used to eliminate the uninformative variables in the raw spectra data. Then, SPA was applied to determine the variables with the least collinearity. A case study was done based on the NIR spectroscopy for the non-destructive determination of soluble solids content (SSC) in ‘Ya’ pear. A total of 160 samples were prepared for the calibration (n?=?120) and prediction (n?=?40) sets. Three calibration algorithms including linear regressions of partial least square regression (PLS) and multiple linear regression (MLR), and nonlinear regression of least-square support vector machine (LS-SVM) were used for model establishment by using the selected variables by SPA, UVE, MC-UVE, UVE-SPA, and MC-UVE-SPA, respectively. The results indicated that linear models such as PLS and MLR were more effective than nonlinear model such as LS-SVM in the prediction of SSC of ‘Ya’ pear. In terms of linear models, different variable selection methods can obtain a similar result with the RMSEP values range from 0.2437 to 0.2830. However, combination of MC-UVE and SPA was helpful for obtaining a more parsimonious and efficient model for predicting the SSC values in ‘Ya’ pear. Twenty-two effective variables selected by MC-UVE-SPA achieved the optimal linear MC-UVE-SPA-MLR model compared with other all developed models by balancing between model accuracy and model complexity. The coefficients of determination (r 2), root mean square error of prediction, and residual predictive deviation by MC-UVE-SPA-MLR were 0.9271, 0.2522, and 3.7037, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号