首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用超声空化联合机械活化法合成一系列微观形貌不同的锂离子电池正极材料LiMn_2O_4,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电池充放电测试仪对制备的LiMn_2O_4正极材料的相组成特性、微观形貌和电化学性能进行相关测试。结果表明,本方法制备的LiMn_2O_4正极材料具有良好的尖晶石结构,延长机械活化时间可以得到致密的类球形结构的尖晶石材料,其中经过机械活化4 h后烧结得到的样品具有良好的电化学性能,在6 C放电倍率下放电比容量为88.2 mAh·g~(-1),返回0.5 C时容量恢复效率达到91.3%。  相似文献   

2.
采用水热法合成了无定形Li-Mn-Al-Co-O前驱体,经过后续热处理制备了Al-Co复合掺杂LiMn_2O_4正极材料Li_(1.035)Co_(0.02)Al_(0.025)Mn_(1.92)0O_4,并对其物理及电化学性能进行了测试。SEM、XRD结果表明:Al-Co的掺入对尖晶石锰酸锂的形貌和晶体结构会有微弱影响。电化学测试结果表明:Al-Co掺杂后,材料的循环性能和倍率性能都获得了显著的改善,其在0.5 C下的首次放电容量为113.9 m A.h/g,经过100次循环后比容量保持率仍然有92.4%,8 C下容量依然高达85.5 m A·h/g。  相似文献   

3.
对水热法合成的无定形Li-Mn-Me-O前驱体(Me=0、Co或Co-Ti)进行热处理,制备了Co掺杂及Co-Ti复合掺杂的尖晶石型LiMn_2O_4正极材料。通过XRD、SEM对Co-Ti复合掺杂的LiMn_2O_4的结构和微观形貌进行分析与表征,并测试了其电化学性能。研究结果表明:所制备的粉体材料具有良好的立方尖晶石结构,无杂相峰存在;Co-Ti复合掺杂使LiMn_2O_4颗粒变小;其在3.0~4.3 V电压范围内,0.5C倍率条件下,首次放电比容量为116.5 m Ah/g,循环100圈后容量保持率为93.5%;与不掺杂样品相比,其初始容量提高,100次循环的容量保持率提高,且高倍率循环性能也明显得到改善。  相似文献   

4.
近年来锂离子电池飞速发展已被广泛应用于便携式电子设备、新能源汽车和储能等领域。具有三维通道的尖晶石LiMn_2O_4材料由于其丰富的资源、低廉的价格和环境友好性,被认为是锂离子电池理想的正极材料。材料的形貌和尺寸决定了其物理化学性能,文中研究了不同粒度MnO_2原材料固相合成LiMn_2O_4材料及其电化学性能。研究结果表明原料粒径最小合成的LiMn_2O_4正极具有最佳的电化学性能,在0.2 C倍率下,首次放电比容量达到141 mAh/g,在1 C倍率下,循环100次,容量保持率为80.9%。  相似文献   

5.
采用去离子水清洗以及添加不同Na_2SO_4杂质含量的方法研究了化学杂质对尖晶石LiMn_2O_4材料电化学性能的影响. 电感耦合等离子体发射光谱(ICP-AES)和离子色谱测试表明, 水洗后材料主要杂质元素Na, S均得到有效去除; 电化学测试表明, 水洗后材料放电比容量得到提高, 与含Na_2SO_4杂质LiMn_2O_4材料相比, 水洗后材料在2C常温循环及倍率性能上都明显优于含杂质LiMn_2O_4材料. 通过扫描电子显微镜(SEM)及能量色散谱(EDS)研究了Na, S化学杂质在电池体系中的存在形式及对材料电化学性能的影响. 结果表明, Na_2SO_4溶解于电解液中以及由Na离子在负极还原所引起的副反应将导致电池倍率及循环性能恶化.  相似文献   

6.
以共沉淀法制备的Ni-Mn包覆Co_3O_4前驱体和Li_2CO_3为原料,通过高温固相法制得了具有核壳结构的锂电池正极材料Li(Co_(0.9)Ni_(0.05)Mn_(0.05))O_2.用扫描电镜(SEM)、X射线能谱仪(EDS)、X射线衍射(XRD)和充放电测试表征了样品的形貌、晶体结构和电化学性能.结果表明,所制备的核壳结构Li(Co_(0.9)Ni_(0.05)Mn_(0.05))O_2具有良好的电化学性能,在3.0~4.5 V和3.0~4.6 V,0.2 C下首次放电容量分别达到180.5 m A·h·g~(-1)和201.3 m A·h·g~(-1),在1 C下,循环50周后容量保持率分别为89.3%和63.3%.  相似文献   

7.
在表面活性剂、超声振动和机械搅拌的协同作用下,采用共沉淀法制备镍钴锰复合氢氧化物前驱体(Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2),最后将制备得到的纳米片前驱体与碳酸锂(Li_2CO_3)采用高温固相法烧结合成三元层状正极材料(LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2)。对于实验制得的前驱体和正极材料使用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、电感耦合等离子体发射光谱仪(ICP-OES)以及电池测试仪对前驱体和正极材料进行表征和电化学性能的检测,以探究表面活性剂对正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2和其前驱体的影响。实验结果表明:使用两种表面活性剂油胺(OA)和聚乙烯吡咯烷酮-K30(PVP-K30)所制备出的前驱体为近正六边形的纳米片,纳米片尺寸为400 nm左右。所制备出的正极材料在室温下,2.8~4.5 V,1C充放电条件下,其初始放电容量分别达到151.699和157.093 mAh·g~(-1),经过50次循环后容量保持率分别达到88.22%和99.04%。这样也表明所制备出的正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2具有良好的电化学性能。  相似文献   

8.
采用共沉淀法合成Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体,将前驱体和LiOH混合均匀后经高温煅烧合成了锂离子电池正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2,并对其进行电化学性能检测。试验表明,制备的电池在电压2.8~4.3V(vs.Li/Li+)区间内,0.1C倍率下的首次库伦效率为88.4%;在1C倍率下循环100次后,放电比容量为157.7mAh/g,容量保持率为96.6%。  相似文献   

9.
采用共沉淀法制备碳酸盐前驱体,通过高温固相反应制备Na~+掺杂的富锂锰基正极材料Li_(1.2-x)Na_xNi_(0.13)Co_(0.13)Mn_(0.54)O_2(x=0,0.01,0.02,0.04,0.08).X射线衍射(XRD)和扫描电镜(SEM)分析表明,x≤0.04时为层状富锂锰基材料的α-NaFeO_2六方相结构,Na掺杂量过大时颗粒表面出现团聚絮状物并发现第二相—P2型层状氧化物.电化学测试发现适量的Na掺杂可提高材料的比容量、倍率和循环性能;掺杂量为0.02时电化学性能最佳:在2.0~4.6 V充放电, Li_(1.18)Na_(0.02)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2在0.1 C放电比容量为273.4 mAh/g,首次库伦效率为93.1%, 1 C循环100次后容量超过200 mAh/g,保持率为84.3%.离子半径较大的Na~+占据Li位,起到柱撑作用,稳定了结构,增大了层间距,利于Li~+扩散;此外,材料表面形成的P2型层状氧化物能够减缓层状结构向尖晶石结构的转变,从而提高了电化学性能.  相似文献   

10.
以氢氧化锂、硝酸镍、二氧化锰为原料,用固相烧结辅助高温球磨方法,合成了具有Ni掺杂的LiMn_2O_4正极材料。研究了Ni在不同掺杂量时对材料的相结构、形貌和充放电性能的影响,并与未掺杂Ni的LiMn_2O_4进行对比。结果表明,掺Ni后材料的放电比容量随着掺杂量的增大逐渐减小,而材料的容量保持率相比未掺杂时略有提高;当掺杂量x=0.05时,所得产物的充放电性能最佳,首次放电容量达到122.9mAh/g,充放电容量保持率在40次循环后为97.48%。  相似文献   

11.
随着电动汽车的发展,迫切需要具有高安全性、高能量密度、高功率、大容量、长寿命、高环保、低成本等优点的锂离子电池。层状结构的富锂锰基正极材料由于具有比容量高、平台电压高、热稳定性好、价格低廉的特点而被认为是有希望的未来电动汽车候选正极材料之一。尽管其拥有很高的比容量,但仍存在着首次循环不可逆容量高、倍率性能差等问题,纳米化是改进材料倍率性能的一种有效手段。本文以Ni O,Co_3O_4,Mn CO_3和Li_2CO_3为原料,成功制备得到了纳米级的锂离子电池正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和充放电测试对所得样品的结构、形貌及电化学性能进行了表征。结果表明,合成的Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2材料具有层状结构,一次颗粒均匀、细小,平均颗粒尺寸约为90 nm,并具有良好的电化学性能,在2.0~4.8 V以0.1C充放电时,首次放电比容量达到284 m Ah·g~(-1),首次库伦效率为86.1%。材料同时拥有良好的倍率性能,1.0C放电容量达到240 m Ah·g~(-1),3.0C放电容量达到210 m Ah·g~(-1)。  相似文献   

12.
采用共沉淀法先合成[Ni_(0.83)Co_(0.11)Mn_(0.06)](OH)_2前驱体,在纯氧气氛下经过两段高温烧结生成LiNi_(0.83)Co_(0.11)Mn_(0.06)O_2正极材料。通过在前驱体配锂烧结过程中加入纳米TiO_2实现了Ti~(4+)掺杂,经过掺杂后的Li[Ni_(0.83)Co_(0.11)Mn_(0.06)]_(0.98)Ti_(0.02)O_2正极材料在1C电流密度下的放电比容量高达185.6mAh/g,循环100圈后容量维持在178.8mAh/g,容量保持率高达96.33%。  相似文献   

13.
通过分层涂浆制备表层涂碳的MlNi_(3.93)Co_(0.46)Mn_(0.27)Al_(0.34)/Co_3O_4CeO_2电极,并建立表层涂碳的MlNi_(3.93)Co_(0.46)Mn_(0.27)Al_(0.34)/Co_3O_4CeO_2电极反应机理模型。物理表征结果表明,活性碳(AC)具有高比表面积,为二维结构,贮氢合金呈块状固体,为单相的CaCu5型六方结构;电化学测试结果表明,活性碳形成双电层的同时也作为导电剂在MlNi_(3.93)Co_(0.46)Mn_(0.27)Al_(0.34)/Co_3O_4CeO_2电极表面形成导电网络,可改善贮氢合金电极的电化学性能,在0.2C充放电下,放电比容量292.6mAh·g-1,以1500mAh·g-1倍率放电时,高倍率放电性能(HRD值)为82.5%,循环100次后容量保持率95.91%,在50%DOD下,氢扩散系数及交换电流密度依次为4.7×10-11cm2·s-1,315.6mA·g-1,相比于未涂炭的MlNi_(3.93)Co_(0.46)Mn_(0.27)Al_(0.34)/Co_3O_4CeO_2电极,分别提高了2.4mAh·g-1、20.94%、5.53%、38.2%、34.5%。  相似文献   

14.
用X射线衍射仪检测不同锂含量的二氧化锰高温化学及随后的电化学锂化过程中的晶体结构的变化;模拟锂硼合金阳极的热电池分析其阴极放电性能,410℃化学锂化时,随Li/Mn原子比的提高,β相结构的二氧化锰经片层状的锂化二氧化锰结构,转向尖晶石型结构;750℃长时间保温,锂化二氧化锰转变成LiMn_2O_4尖晶石和Mn_2O_3.500℃电化学嵌锂时,也生成过渡相Li_xMnO_2和最终相LiMn_2O_2尖晶石,其阴极放电电压与锰的初始价态不敏感,过电位主要取决于晶体结构中锂离子的扩散通道。  相似文献   

15.
以自制Ni0.4Co0.2Mn0.4(OH)2前驱体和Li_2CO_3为原料,在空气气氛下采用固相烧结工艺制备了LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2锂离子电池正极材料。通过SEM和XRD等手段对材料烧结前后形貌与结构进行表征,并测试了烧结后锂离子电池正极材料的电化学性能。结果表明,Ni0.4Co0.2Mn0.4(OH)2前驱体具有良好的片状嵌入结构,且烧结制备的LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料混排因子c/a=4.967 3,阳离子混排因子I(003)/I(104)=1.25、I(006+102)/I(101)=0.333、I(018)/I(110)=0.87,表明LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2具有良好的层状结构。在2.5~4.6V、0.2C和0.5C下,LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料的首次放电比容量分别为166和154mAh/g,循环80次后容量分别保持为111和100mAh/g,具有良好的电化学性能。  相似文献   

16.
采用共沉淀法结合热分解法制备Mn_3O_4,并对其结构、形貌和电化学性能进行探究。考查了煅烧温度、PVA用量以及碳酸铵的添加等因素对材料性能的影响,确定了优化的工艺条件。结果表明:Mn_3O_4的优化煅烧温度是1 000℃,PVA对Mn_3O_4的形成有促进作用,较优的PVA添加量为20%左右,较不添加PVA所制备的样品其放电比容量提高了近10倍。在无PVA条件下,添加碳酸铵对产物的电化学性能起到抑制作用;在有PVA条件下,添加碳酸铵能提高产物的电化学性能。  相似文献   

17.
用固相反应法合成了Li~+掺杂的LiNi_(0.5)Mn_(1.5)O_4,并用XRD、SEM和恒电流充放电技术研究Li+掺杂对材料结构、形貌和充放电性能的影响。结果表明Li+掺杂和未掺杂LiNi_(0.5)Mn_(1.5)O_4均具有Fd3m尖晶石结构,掺杂的Li~+以固溶体形式存在,掺杂少量的Li+能显著提高材料循环性能,但放电比容量稍有降低,其中Li_(1.05)Ni_(0.45)Mn_(1.5)O_4的放电比容量为136.1 m A·h/g,循环30次后基本不变,具有很好的循环稳定性。  相似文献   

18.
掺钴对尖晶石型LiMn_2O_4正极材料性能影响   总被引:1,自引:0,他引:1  
采用固相合成法制备了锂离子电池正极材料用尖晶石型LiMn2O4正极材料,并通过加入Co对材料进行了掺杂改性研究;用X射线衍射(XRD)和扫描电镜(SEM)研究了材料的晶体结构和微观形貌,充放电循环实验对材料的电化学性能进行了测试。结果表明:纯相尖晶石型LiMn2O4初始放电比容量为118.91 mA.h/g,循环25次后放电比容量为107.03mA.h/g,比容量保持率为90.01%;掺杂Co的材料同样具有尖晶石型结构,初始放电比容量略有降低,但循环性能有明显改善,掺Co改性样品Li1.05Co0.04Mn1.96O4的初始放电比容量为114.55mA.h/g,25次充放电循环后,放电比容量为105.76mA.h/g,比容量保持率为92.33%。  相似文献   

19.
文章介绍了锂离子电池正极材料尖晶石锰酸锂的一些结构特性,重点描述了尖晶石LiMn_2O_4正极材料的制备方法及其优缺点,以及关于尖晶石LiMn_2O_4正极材料的最新改性研究,根据尖晶石LiMn_2O_4现有的状况展望了其发展前景。  相似文献   

20.
在传统碳酸酯电解液中添加氟代碳酸乙烯酯(FEC)可提高电解液的氧化分解电位,从而在高于4. 5 V(vs. Li/Li~+)电压下减少电解液溶剂的分解。用FEC部分或全部取代传统电解液中的碳酸乙烯酯(EC)溶剂,研究4. 7 V (vs. Li/Li~+)高电压下FEC对Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2电化学性能的影响。结果表明,FEC的加入提高了Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2电极的首次放电比容量及循环性能,且循环稳定性随FEC量的增加而变高,EC被FEC (33. 33%,质量分数)全部取代EC时电化学性能最佳;循环100周时,FEC为33. 33%的电解液中Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2电极的比容量为200. 5 mAh·g~(-1),容量保持率为85. 72%,而传统电解液中Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2电极的比容量在60周时衰减至115. 0 mAh·g~(-1),容量保持率仅为49. 89%。d Q/d V曲线表明,随FEC取代量的增加,循环过程中产生的电化学极化越小。X射线衍射(XRD)结果表明,在循环过程中,由于FEC的加入缓减了Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2结构的变化,且FEC全部取代EC时效果最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号