共查询到20条相似文献,搜索用时 15 毫秒
1.
针对滚动轴承工作工况复杂、载荷大及测得的振动信号信噪比(signal?to?noise ratio ,简称SNR)低的特点,提出了一种利用注意力循环机制(attention recurrent,简称AR)构建数字胶囊并与胶囊网络(capsule network,简称Caps)相融合的微弱故障诊断模型。首先,在构建初级胶囊时引入双向长短时记忆网络(bidirectional long short time memory neural network,简称Bi?LSTM),对时频图中的时序特征进行提取,并建立胶囊间的非线性关联;其次,引入注意力循环机制构建数字胶囊,提高时频图中不同时间和频带的能量强度变化的影响力;然后,通过3D卷积与动态路由机制构建的数字胶囊进行自适应融合,实现特征的多样提取;最后,利用softmax分类器将融合特征映射到输出层,实现高噪声环境下的滚动轴承故障诊断。结果表明,该方法对小样本、低信噪比的微弱故障信号较其他诊断模型有更高的诊断精度,并能够有效减小过拟合问题。使用不同负载下的数据做测试集验证了该模型有较强的泛化能力。 相似文献
2.
《机电工程》2021,38(10)
采用传统的滚动轴承故障诊断方法对时域信号进行特征提取时,过分依赖于专家知识,而且提取到的特征对故障信息表达不充分,针对这一问题,提出了一种基于残差网络和胶囊网络的滚动轴承智能故障诊断方法。首先,以原始振动信号作为输入,使用一维卷积神经网络对其时域信号进行了全局特征提取;然后,利用残差网络提取了数据的低层特征,并将其输入到胶囊网络中,进行了低层特征矢量化处理;随后,采用模糊聚类改进的动态路由方法完成了低层特征到高层特征的聚合,并进行了特征分类;最后,为了验证该方法的有效性,采用滚动轴承数据集对所提出的方法进行了试验验证,并将该方法诊断结果与其他深度学习方法诊断结果进行了比较。研究结果表明:残差胶囊网络在分类精度上达到了99.95%,并且在收敛速度方面得到了提高,通过t-sne可视化分析进一步证明了该网络模型具有自适应挖掘高层特征的能力;残差胶囊网络在滚动轴承故障诊断中具有良好的精确性和泛化性。 相似文献
3.
现阶段基于深度学习的故障诊断需要大量的数据,而制作数据集是一项耗时耗力的工作。针对这一缺点,提出一种基于门控循环单元(Gate Recurrent Unit,GRU)与迁移学习的滚动轴承故障诊断方法。该方法利用与目标域特征相似且易获得源域数据的特点训练网络,确定网络结构和参数,冻结经过训练的卷积神经网络(Convolutional Neural Networks,CNN)和GRU,用小样本目标域数据训练该网络,微调全连接层和分类层,达到迁移的目的。实验对比分析表明,基于GRU与迁移学习的滚动轴承故障诊断方法明显优于基于BP神经网络和基于概率神经网络(Probabilistic Neural Network,PNN)方法的故障诊断,能够更加准确地进行故障分类,为小样本数据集下的故障诊断提出了新思路。 相似文献
4.
针对于一维卷积神经网络使用单卷积核可能出现特征丢失,特征提取不充分,无法利用时间序列信息,以及Softmax无法进一步提升诊断准确率等问题。提出一种多通道一维卷积双向门控循环网络的深度学习算法。首先,设计一个3通道的一维卷积神经网络进行不同尺寸的故障特征提取;其次,引入双向门控循环单元挖掘特征信号中的动态时间序列关系;最后,采用支持向量机替换传统卷积神经网络中常用的Softmax进行故障分类,进一步提升诊断的准确率。实验证明,该方法将故障诊断的准确率提升至99.8%。通过与其他方法的对比,证明了该方法有着更高的准确率和更好的鲁棒性。 相似文献
5.
在实现滚动轴承故障诊断的过程中,需要通过时频分析方法对原始信号进行特征集构建,期间包含大量计算且对于人工经验有着很强依赖性.针对滚动轴承故障诊断中依赖特征集选取这一问题,提出了基于深度残差网络的故障诊断方法,凭借深度学习的自主学习及强泛化能力以实现故障特征的自我获取和训练,消除故障诊断中人为特征集选取环节,从而简化故障诊断的流程.主要内容包括:首先,构建残差网络模型,通过建立多组卷积层、池化层及残差块,共同组成深层次网络模型;其次,通过滚动轴承故障实验台获取不同类型的故障样本,对信号进行分组并构建训练样本和测试样本;进而,对网络进行初始化设定后,将训练集输入深度残差网络模型,利用多层卷积和池化运算实现对原始信号抽象化表征;最后,在网络模型末端集成Softmax分类器,实现对两类轴承故障样本的分类诊断.所提出方法在两组诊断实验中均达到了 100%的准确率,对于不同类型、转速和损伤程度的滚动轴承故障都具有很好效果.研究说明所建立模型能够自主地挖掘故障信号的特征集,可在一定程度上简化故障诊断研究中的预处理和特征计算环节,避免人工提取特征的主观盲目性和经验依赖性,具有广泛的工程应用前景. 相似文献
6.
7.
针对传统智能故障诊断依赖于人工经验进行特征提取和传统卷积神经网络(Convolutional neural networks, CNN)参数过多、训练量过大且无法充分利用时间序列信息的缺点,提出一种基于改进一维卷积神经网络与双向门控循环单元的深度学习新算法。首先,该方法利用一维卷积神经网络自提取能力进行特征提取,同时设计了一个全局均值池化层替换传统卷积神经网络的全连接层,减少参数数量;其次,引入双向门控循环单元学习特征信号中的时间序列关系;最后,通过支持向量机替换传统CNN中的Softmax层进行故障分类,进一步提高诊断的准确率。实验表明,该方法将诊断的准确率提升至99.8%,并且加快了诊断的速度。通过与其他方法的对比,证明了该方法有着更高的准确率,更快的诊断速度,更好的鲁棒性。 相似文献
8.
9.
针对传统轴承故障诊断需要依靠先验知识和专业技术的问题,提出一种端到端的流程架构和基于卷积神经注意力模块-卷积神经网络(Convolutional Block Attention Module-Convolution Neural Network, CBAM-CNN)的滚动轴承故障诊断模型,该方法能够自适应提取故障特征,摆脱了对人工处理复杂信号的依赖。首先,将一维故障振动信号转换为二维图像,并用伪彩色将其变为RGB三通道图像;其次,通过注意力机制CBAM模型,注重其重要的特征信息,调整权重参数,之后将其输入卷积神经网络,并添加Dropout层来增强模型的鲁棒性,添加L2正则化来防止过拟合且提升模型的泛化能力;最后,对不同类型的滚动轴承故障进行分类,完成滚动轴承故障诊断。为了验证CBAM-CNN模型的性能,使用了美国凯斯西储大学轴承实验台数据集进行验证,并将该网络模型应用于轴承实验台。结果表明,与其他诊断方法相比,该方法不仅结构简单,而且诊断高效,故障诊断效果良好。 相似文献
10.
11.
12.
13.
道岔是铁路上重要的信号基础设备之一,其故障将直接影响行车安全和效率.本文从分析道岔的功率曲线入手,首先提取其时域及哈尔(Haar)小波变换特征并进行特征选择,然后通过聚类算法和皮尔逊(Pearson)相关系数建立退化状态与故障状态之间的关联,最后利用卷积神经网络(Convolutional neural network,CNN)和门控循环单元(Gated recurrent unit,GRU)建立道岔的状态预测模型,实现道岔的故障预测.CNN可以直接提取原始功率数据的特征同时降低维数,简化了预测过程.GRU独特的门结构和处理时间序列的特点在预测精度和时间上相比传统的预测方法具有一定优势.实验结果表明,当特征矩阵采用40维输入,迭代50次时,道岔状态预测准确率达94.2%. 相似文献
14.
针对传统轴承故障诊断方法依赖人工进行特征提取时效率低且难以处理大规模数据等问题,将卷积长短时深度神经网络(CLDNN)引入轴承故障诊断并进行改进,提出一种基于注意力机制的卷积门控深度神经网络(Attention-CGDNN)的滚动轴承故障诊断模型,该模型将卷积神经网络、门控循环单元和全连接神经网络有效融合以实现滚动轴承信号特征提取,并加入注意力机制使网络更专注于重要特征,最后通过Softmax分类算法实现滚动轴承故障诊断。采用CWRU和XJTY-SY轴承数据集的验证结果表明,Attention-CGDNN模型具有训练参数少,训练难度小,收敛速度快和识别精度高的特点,特征提取能力更强,故障诊断性能优于传统模型。 相似文献
15.
16.
17.
18.
为了解决当前人工智能预测方法在滚动轴承状态趋势预测中预测精度较差、计算效率较低的问题,提出基于强化学习单元匹配循环神经网络(RLUMRNN)的滚动轴承状态趋势预测新方法。先采用滑动平均奇异谱熵作为滚动轴承状态退化特征,再将该特征作为RLUMRNN的输入完成滚动轴承状态趋势预测。在RLUMRNN中,利用最小二乘线性回归法构造单调趋势识别器,将轴承整体的状态退化趋势分为上升、下降、平稳3种单调趋势单元,并通过强化学习为每一种单调趋势单元选择一个隐层数和隐层节点数与其相适应的循环神经网络,从而改善了RLUMRNN的非线性逼近能力和泛化性能;用3种单调趋势单元和不同隐层数、隐层节点数分别表示Q值表的状态和动作,并构造关于循环神经网络输出误差的新型奖励函数,以明确强化学习的目标,从而减小循环神经网络的输出误差,避免在Q值表更新过程中使Agent(即决策函数)盲目搜索,提高了RLUMRNN的收敛速度。通过双列滚子轴承状态趋势预测实例验证了该方法具有较高的预测精度和计算效率。 相似文献
19.
传统卷积神经网络模型采用单一类型卷积核,面对复杂工况下的实际数据时存在特征提取不充分,故障识别率低等问题,因此提出了一种基于多种卷积核特征提取自适应融合的滚动轴承故障诊断方法(MCK-CNN)。首先,将轴承一维振动信号经过小波变换转换为二维时频图,将时频图经过一个共同的特征提取网络初步进行特征提取后并行经过一个常规的Convolution和Involution卷积网络;然后,经过2个由不同卷积核构成的网络进行不同方式的特征提取并通过CBAM注意力模块将两类特征自适应地融合;最后,将融合特征输入全连接层并通过Softmax函数输出分类结果。CWRU和实验室轴承数据集的试验结果表明,MCK-CNN模型的训练效率和故障识别率均较高。 相似文献
20.
船用补水泵是常规的船用设备,与陆上普通补水泵不同的是船用补水泵有着较高的可靠性要求,并且要求故障发生时要及时发现故障位置。为了能够提升对于补水泵的健康监测以及智能故障诊断,这篇文章提出了一种基于深度残差收缩网络的补水泵滚动轴承故障诊断模型。该模型使用的深度残差收缩网络是对于残差网络的改进,首先增加了网络深度,强化了特征提取能力,残差模块的显著特点是具有恒等映射结构,该结构能有效解决深度神经网络中的梯度消失或爆炸问题。通过软阈值和注意力机制的深度融合从而实现样本降噪功能。最后,为了验证方法的有效性,采用大量的补水泵滚动轴承振动信号进行测试,通过与其他主流网络模型的故障分类准确率对比,得出结论深度残差收缩网络对于滚动轴承的故障具有较高的分类精度。 相似文献