首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of glass beads on the stress-strain behavior of isotactic polypropylene has been examined. Poisson's ratio and secant compliance as a function of strain have been measured. Both sets of data are consistent with interfacial debonding as the initial damage mechanism. Interfacial debonding is then followed by extensive plastic yielding of the matrix at the debond sites. The maximum stress and strain to failure decrease with glass bead content and glass bead diameter. Impact properties correlate with the ability of the composites to reach high strain to failure. The proposed failure mechanisms are supported by fractography and in-situ deformation studies by scanning electron microscopy.  相似文献   

2.
The Poisson's ratios of polyamic acid and polyimide films were determined using a high pressure gas dilatometer. In this technique, a sample is held at constant length and a hydrostatic pressure is applied to the sample. The resulting change in stress on the sample with applied pressure provides a measure of Poisson's ratio. For fully cured polyimide films based on pyromellitic dianhydride and oxydianiline, Poisson's ratio was measured to be 0.34 at approximately 1% strain. This value increases to 0.48 as the strain is increased to 5%.  相似文献   

3.
Previous experimental studies of silicone coatings have shown three distinct types of release behavior in the tensile flat punch test, depending on coating thickness. The mechanical response in the punch test is highly dependent upon the Poisson's ratio of the coating and its confinement ratio (punch radius divided by coating thickness). This study developed a high accuracy finite-element model of the punch test using the adaptive p-method with extensive mesh refinement to produce smooth stress profiles up to the punch edge. Stress distributions were found for a wide range of confinement parameters and Poisson's ratios. At a typical Poisson's ratio of 0.49, the highest center stress occurred for the intermediate thickness coatings—not thin or thick. Also, the thickest coatings demonstrated steadily increasing high stress towards the edge, while other thicknesses showed the steep singularity at the edge with a protective stress depression bordering inside it. The results further help explain why the critical pull-off force continues to increase as the thickness decreases, even with different release mechanisms. The stress profiles for thick coatings have almost no sensitivity to Poisson's ratio, unlike other thicknesses which show high sensitivity. Edge peeling is most likely to occur for all thick coatings, while other debonding modes are most likely for thin and intermediate thickness coatings. Together, results show the stress mechanics of the flat punch test follow three distinct types of confinement.  相似文献   

4.
The representation and interpretation of dynamic mechanical properties of heterogeneous polymer–polymer composites are discussed in terms of equivalent mechanical models and the viscoelastic form of the well-known Kerner equation. Model parameters calculated from dispersed phase volume fraction and matrix Poisson's ratio (using the Kerner equation) are in fairly good agreement with experimental values for systems comprising soft inclusions in a hard matrix. The effects of partial phase inversion on dynamic properties are discussed in terms of an extension of the Kerner equation. Model calculations indicate that the in-phase component of the complex modulus depends primarily on dispersed phase volume concentration, while the out-of-phase component depends on both the concentration and the morphology of the dispersed phase. Although substantial information about the microstructure of polymer–polymer composites can in principle be deduced from dynamic measurements, quantitative correlation between dynamic properties and use properties such as impact strength (which may have a quite different dependence on structural parameters) is probably fortuitous.  相似文献   

5.
To improve the simulation of viscoelastic behavior of composites, an approximate and incremental method for the determination of Poisson's complex ratio of the polymer matrix is proposed. This method is based on the fact that many polymers exhibit a slight variation of their bulk modulus throughout, at their main relaxation temperature. We examine different parameters that affect the proposed method. It is shown that (i) the Poisson's complex ratio of the matrix and the complex modulus of the composite depend significantly on the initial values of the incremental method and (ii) the Poisson's complex ratio of the matrix allows for the effects of filler content on the magnitude of the mechanical relaxation.  相似文献   

6.
Elastic and thermomechanical properties of amorphous carbon nitrite thin films as a function of nitrogen concentration are reported. The films were prepared by ion beam assisted deposition with nitrogen concentrations ranging from 0 to 33 at.%. By using a combination of the thermally induced bending technique and nano-indentation measurements it was possible to calculate independent values for the Young's modulus, the Poisson's ratio, as well as the thermal expansion coefficient of the films. The hardness and elastic recovery are discussed in terms of the Young's modulus and the Poisson's ratio.  相似文献   

7.
One method for producing synthetic auxetic materials is starting with polymer powders and using a combination of compaction, sintering, and extrusion. This article presents a novel variation on this route, omitting the extrusion stage and generating the required microstructure by compaction followed by multiple sintering. The effects of single, double, and quadruple sintering on compacted cylinders are examined in terms of a detailed microstructural examination, study of density and dimensional variations, and measurement of Poisson's ratio. The best results were obtained by compaction followed by double sintering, resulting in a strain dependent Poisson's ratio as low as ν = ?0.32. This new technique has great potential for increasing the range of geometries that can be fabricated and is very akin to ceramic sintering techniques. POLYM. ENG. SCI., 45:568–578, 2005. © 2005 Society of Plastics Engineers  相似文献   

8.
ABSTRACT

The present work focuses on the determination of volume change accompanying deformation and Poisson's ratio for electrospun nanofibrous membranes. For this purpose, polyurethane (PU) is considered for the fabrication of electrospun nanofibrous membranes. Three different sample thicknesses are fabricated. Following this, surface morphology analysis and fibre orientation analysis are conducted to investigate the variation of properties between electrospun PU membranes of different thicknesses. Subsequently, PU specimens are subjected to uniaxial extension test where the changes in sample width and thickness are recorded as a function of applied strain. Volume changes are computed while further analysis on the relationship between transverse strains and axial strain provided the values of Poisson's ratio. For all three electrospun PU samples investigated, significant volume changes are observed while the in-plane Poisson's ratio is found to be around 0.55. However, the out-of-plane Poisson's ratio of electrospun PU membranes are not classical and remains undetermined.  相似文献   

9.
The effect of external loading on the rate of water uptake by unidirectional composites is examined as a function of the loading angle (0) with respect to the fibre direction in glass and graphite-reinforced epoxies. The moisture uptake under the effect of the external load increases with 0, suggesting a dependence on the matrix volume increase, itself a function of the strain and of the Poisson's ratio.  相似文献   

10.
The axial strain induced stresses in double‐coated optical fibers are analyzed by the viscoelastic theory. A closed form solution of the axial strain induced viscoelastic stresses is obtained. The viscoelastic stresses are a function of the radii, Young's moduli, relaxation times and Poisson's ratios of the polymeric coatings. If the applied axial strain linearly increases, the induced stresses increase with the time. On the other hand, if the axial strain is fixed, besides the axial stress in the glass fiber, the stresses exponentially decrease with the time. The relaxation of stresses is strongly dependent on the relaxation times of the polymeric coatings. If the relaxation time of the polymeric coating is very long, the viscous behavior of the polymeric coatings will not appear, and the axial strain induced stresses solved by the viscoelastic theory are the same as those solved by the elastic theory. On the other hand, if the relaxation time of the polymeric coating is very short, the relaxation of stresses is very apparent. A compressive radial stress at the interface of the glass fiber and primary coating will result in an increase of the transmission losses, and a tensile interfacial radial stress will possibly produce debonding at the interface of the glass fiber and primary coating. To minimize this interfacial radial stress, the radius, Young's modulus and Poisson's ratio of the polymeric coatings should be appropriately selected, and the relaxation time of the primary coating should be shortened. Finally, the stresses in single‐coated and double‐coated optical fibers are discussed.  相似文献   

11.
Abstract

The term 'auxetic' is applied to materials that possess a negative Poisson's ratio ν. The use of auxetic polymers has been limited because of problems with deploying them in their fabricated forms, i.e. as 10 mm diameter cylinders. This paper reports the successful development of a processing route to produce a more useful and usable form of auxetic polymeric material, namely fibres. A conventional polymer processing technique (melt spinning) is the basis of this technique, with novel modifications. Video extensometry was used to measure the Poisson's ratio and a value of ν = -0.60±0.05 was obtained.  相似文献   

12.
Poisson's ratio of polymeric materials, although generally assumed as a constant, is known to display a viscoelastic dependence on time, temperature, and strain. This article investigates the phenomenology of this dependence on two crosslinked epoxy systems with different glass transition temperatures. Poisson's ratio measurements are performed by contact extensometers simultaneously measuring the axial and transverse deformations under two different tensile testing conditions: (i) constant deformation rate, in which the effects of strain, strain rate, and temperature are highlighted; (ii) stress relaxation (or constant deformation), where the dependence of Poisson's ratio on time is studied at various strain levels. The viscoelastic Poisson's ratio increases as strain, temperature, and time increases, with trends markedly depending on the materials glass transition. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

13.
Digital image correlation methods were used for further studies of the viscoelastic Poisson's ratio of solid propellants. The Poisson's ratio and the Young's relaxation modulus of solid propellants were separately determined in a single stress relaxation test. In addition, the effects of temperature, longitudinal strain, preload and storage time on the Poisson's ratio of solid propellants were discussed. The Poisson's ratio master curve and the Young's relaxation modulus master curve were constructed based on the time‐temperature equivalence principle. The obtained results showed that the Poisson's ratio of solid propellants is a monotone non‐decreasing function of time, the instantaneous Poisson's ratio increased from 0.3899 to 0.4858 and the time of the equilibrium Poisson's ratio occurred late when the temperature was varied from −30 °C to 70 °C. The Poisson's ratio increased with temperature and longitudinal strain, decreased with preload and storage time, while the amplitude Poisson's ratio increased with preload, decreases with longitudinal strain and storage time. The time of the equilibrium Poisson's ratio occurred in advance with the increase of longitudinal strain, preload and storage time.  相似文献   

14.
The influence of matrix properties on randomly oriented glass fiber epoxy composites has been studied. It is shown that an increased ductility (flexibility) of the matrix does not result in greater elongation to failure of the composite under tensile and flexural loads. The tensile (and flexural) strength and the modulus of elasticity are decreased as the ductility of the resin is increased. It is concluded that since the matrix material is subjected to a triaxial state of stress when the composite specimen is subjected to uniaxial loads, the effect of matrix modulus, Poisson's ratio, and yield strength are more important than the matrix ductility measured under uniaxial stress. The effect on mechanical properties of various surface treatments applied to the fibers is also investigated. Finally, scanning electron micrographs are presented showing matrix cracks, fiber debonding, and fiber pull-out.  相似文献   

15.
The effects of voids on the response of a rubber poker chip sample are examined. A theoretical estimation of the diametral contraction of the sample was performed, using the linear theory of stress analysis. Experimental measurements of the lateral contraction at the middle plane of the poker chip elastomer specimen have shown that the testing rubber is not incompressible. By comparing the experimental data with the theoretical predicted equation, the value of the Poisson's ratio veff was found to be 0.487, for a given aspect ratio a* of the sample. A theoretical equation for the volume dilatation of the poker chip rubber sample was developed. Using the given aspect ratio, the value of veff, and the experimental stress/strain curve of the sample, an estimation of the volume dilatation was formed. The effective Poisson's ratio was also found using the linear stress analysis, by comparing the developed mathematical equations for an incompressible rubber with voids with a compressible one.  相似文献   

16.
The dependence of the elastic properties of a range of powder compact samples has been measured as a function of firing variables. It was found that both Young's modulus and Poisson's ratio are particularly sensitive to the peak temperature and the time for which the peak temperature is maintained, over a range of these variables for which density is not significantly affected. The material investigated is used industrially for the manufacture of wall tiles. Firing trials conducted in an industrially operated tunnel kiln have indicated that sufficient variation in firing conditions exists, in the cross-section of the tunnel kiln, to cause significant variation in the values of Young's modulus and Poisson's ratio of bodies fired in different positions in the kiln. Microstructural examination of bodies produced to have very similar densities but vastly different values of Young's modulus and Poisson's ratio has indicated that the dependence of Young's modulus and Poisson's ratio on firing conditions can be explained by the extent of sintering within the ceramic matrix.  相似文献   

17.
The aim of this article was to evaluate and analyze the mechanical properties of bonded elastomer discs subjected to triaxial stress on an MTS (machine for testing samples) equipment. Saveral pulling tests were run on an Instron machine using an O-ring type of samples to evaluate the mechanical properties of testing unfilled nitrile rubber subjected to uniaxial tension. It was found from the stress–strain curve of the O-ring samples that a very small stress softening occurred when the maximum strain is less than 200%. It was also found that the stress and strain at break does not drastically vary with respect to strain rate. The initial modulus does not vary with respect to strain rate up to ε = 2 min−1, and only for large values of ε does the modulus depend on the strain rate. The material used for the uniaxial tension experiments were bonded between two rigid cylindrical steel plates and the specimens were subjected to uniaxial tension on an MTS machine. It was found that the initial modulus in tension was smaller than in compression. The theoretical predicted initial modulus from Gent's equation was much larger than experimentally estimated. It was shown that the elastomer in the pancake tests was not incompressible and a value of 0.494 was determined for the effective Poisson's ratio. A mathematical equation was derived for the effective Poisson's ratio as a function of the volume fraction of voids within the testing material. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Conventional tensile dilatometry techniques are extended to cyclic fatigue applications to study volume changes that occur during controlled-load cyclic fatigue of polyacetal. During fatigue, in-situ measures of the irreversible and elastic volume change are monitored together with dynamic viscoelastic parameters (E′, E″, and Tan δ), and changes in the energy densities (strain energy, potential energy, and irreversible work). The results show that the effective irreversible volume of the polyacetal gradually increases over a wide range of applied cyclic stress. However, at high stress levels and/or frequencies (i.e., low-cycle, thermally dominated regime), the effective Poisson's ratio of the polyacetal increases as it softens (evidenced by the dynamic viscoelastic data). Conversely, at lower stress levels, the Poisson's ratio continually decreases coincident with decreases in the loss modulus (E″) and the irreversible work density. These results are indicative of entirely different mechanisms governing the low-cycle (high stress level) and high-cycle (low stress) regimes. Also, comparisons between tensile and fatigue dilatometry studies show that the dilational-strain response of samples fatigued at high stress levels are similar to data obtained from monotonic tensile dilatometry. However, the dilationstrain response of samples fatigued at lower stress levels are distinctly different from low-cycle fatigue and tensile dilatometry.  相似文献   

19.
The large deformation failure behavior of gelatin–maltodextrin composite gels was assessed. All the studied compositions were selected to lie within the incompatibility domain of the gelatin–maltodextrin phase diagram at 60°C, which produced gelatin continuous (maltodextrin included) and maltodextrin continuous (gelatin included) composites. Composite microstructural evaluation was performed using confocal laser scanning microscopy (CLSM). The large deformation mechanical behavior was measured in tension and compression experiments. Crack–microstructure interactions were investigated by dynamic experiments on the CLSM. The gelatin continuous composites exhibited pseudo-yielding behavior during tension and compression testing, and there was a significant decrease in modulus that arose from interfacial debonding. Conversely, the maltodextrin continuous composites exhibited an essentially brittle failure behavior, and there was an approximately linear increase in stress with increasing strain until fracture (which occurred at significantly lower strains than for the gelatin continuous composites). The CLSM observation of the failure of the notched samples also demonstrated interfacial debonding in the crack path; however, this occurred at significantly smaller strains than for the gelatin continuous samples with minimal elastic–plastic deformation of the maltodextrin matrix. The Poisson ratio was estimated to be close to 0.5 for these composites for all examined compositions. Compositions corresponding to a tie line of the phase diagram were also investigated to assess the influence of the relative phase volume (for constant phase compositions) on the failure behavior. The majority of the parameters subsequently extracted from the stress–strain curves were apparently functions of the individual phase volumes. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 124–135, 2001  相似文献   

20.
The complex Poisson's ratio of a urethane rubber compound was determined for frequencies up to 700 cps. It is shown that the assumption made by earlier workers using this material, that Poisson's ratio is a numerical constant slightly less than 1/2, while approximately correct at low (creep) frequencies is definitely invalid in certain more elevated frequency bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号