首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large eddy simulation (LES) seeks to predict the dynamics of spatially filtered turbulent flows. The very essence is that the LES-solution contains only scales of size ≥Δ, where Δ denotes some user-chosen length scale. This property enables us to perform a LES when it is not feasible to compute the full, turbulent solution of the Navier-Stokes equations. Therefore, in case the large eddy simulation is based on an eddy viscosity model we determine the eddy viscosity such that any scales of size <Δ are dynamically insignificant. In this paper, we address the following two questions: how much eddy diffusion is needed to (a) balance the production of scales of size smaller than Δ; and (b) damp any disturbances having a scale of size smaller than Δ initially. From this we deduce that the eddy viscosity ν e has to depend on the invariants q = \frac12tr(S2)q = \frac{1}{2}\mathrm{tr}(S^{2}) and r = -\frac13tr(S3)r= -\frac{1}{3}\mathrm{tr}(S^{3}) of the (filtered) strain rate tensor S. The simplest model is then given by ne = \frac32(D/p)2 |r|/q\nu_{e} = \frac{3}{2}(\Delta/\pi)^{2} |r|/q. This model is successfully tested for a turbulent channel flow (Re  τ =590).  相似文献   

2.
Let (S,d) be a finite metric space, where each element pS has a non-negative weight w (p). We study spanners for the set S with respect to the following weighted distance function:
$\mathbf{d}_{\omega}(p,q)=\left\{{ll}0&\mbox{ if $\mathbf{d}_{\omega}(p,q)=\left\{\begin{array}{ll}0&\mbox{ if  相似文献   

3.
We study the string-property of being periodic and having periodicity smaller than a given bound. Let Σ be a fixed alphabet and let p,n be integers such that p £ \fracn2p\leq \frac{n}{2} . A length-n string over Σ, α=(α 1,…,α n ), has the property Period(p) if for every i,j∈{1,…,n}, α i =α j whenever ij (mod p). For an integer parameter g £ \fracn2,g\leq \frac{n}{2}, the property Period(≤g) is the property of all strings that are in Period(p) for some pg. The property Period( £ \fracn2)\mathit{Period}(\leq \frac{n}{2}) is also called Periodicity.  相似文献   

4.
In this paper, we study the merging of two sorted arrays and on EREW PRAM with two restrictions: (1) The elements of two arrays are taken from the integer range [1,n], where n=Max(n 1,n 2). (2) The elements are taken from either uniform distribution or non-uniform distribution such that , for 1≤ip (number of processors). We give a new optimal deterministic algorithm runs in time using p processors on EREW PRAM. For ; the running time of the algorithm is O(log (g) n) which is faster than the previous results, where log (g) n=log log (g−1) n for g>1 and log (1) n=log n. We also extend the domain of input data to [1,n k ], where k is a constant.
Hazem M. BahigEmail:
  相似文献   

5.
Given a “black box” function to evaluate an unknown rational polynomial f ? \mathbbQ[x]f \in {\mathbb{Q}}[x] at points modulo a prime p, we exhibit algorithms to compute the representation of the polynomial in the sparsest shifted power basis. That is, we determine the sparsity $t \in {\mathbb{Z}}_{>0}$t \in {\mathbb{Z}}_{>0}, the shift a ? \mathbbQ\alpha \in {\mathbb{Q}}, the exponents 0 £ e1 < e2 < ? < et{0 \leq e_{1} < e_{2} < \cdots < e_{t}}, and the coefficients c1, ?, ct ? \mathbbQ \{0}c_{1}, \ldots , c_{t} \in {\mathbb{Q}} \setminus \{0\} such that
f(x) = c1(x-a)e1+c2(x-a)e2+ ?+ct(x-a)etf(x) = c_{1}(x-\alpha)^{e_{1}}+c_{2}(x-\alpha)^{e_{2}}+ \cdots +c_{t}(x-\alpha)^{e_{t}}  相似文献   

6.
An axis-parallel k-dimensional box is a Cartesian product R 1×R 2×???×R k where R i (for 1≤ik) is a closed interval of the form [a i ,b i ] on the real line. For a graph G, its boxicity box?(G) is the minimum dimension k, such that G is representable as the intersection graph of (axis-parallel) boxes in k-dimensional space. The concept of boxicity finds applications in various areas such as ecology, operations research etc. A number of NP-hard problems are either polynomial time solvable or have much better approximation ratio on low boxicity graphs. For example, the max-clique problem is polynomial time solvable on bounded boxicity graphs and the maximum independent set problem for boxicity d graphs, given a box representation, has a $\lfloor 1+\frac{1}{c}\log n\rfloor^{d-1}An axis-parallel k-dimensional box is a Cartesian product R 1×R 2×⋅⋅⋅×R k where R i (for 1≤ik) is a closed interval of the form [a i ,b i ] on the real line. For a graph G, its boxicity box (G) is the minimum dimension k, such that G is representable as the intersection graph of (axis-parallel) boxes in k-dimensional space. The concept of boxicity finds applications in various areas such as ecology, operations research etc. A number of NP-hard problems are either polynomial time solvable or have much better approximation ratio on low boxicity graphs. For example, the max-clique problem is polynomial time solvable on bounded boxicity graphs and the maximum independent set problem for boxicity d graphs, given a box representation, has a ?1+\frac1clogn?d-1\lfloor 1+\frac{1}{c}\log n\rfloor^{d-1} approximation ratio for any constant c≥1 when d≥2. In most cases, the first step usually is computing a low dimensional box representation of the given graph. Deciding whether the boxicity of a graph is at most 2 itself is NP-hard.  相似文献   

7.
8.
Consider the following model on the spreading of messages. A message initially convinces a set of vertices, called the seeds, of the Erdős-Rényi random graph G(n,p). Whenever more than a ρ∈(0,1) fraction of a vertex v’s neighbors are convinced of the message, v will be convinced. The spreading proceeds asynchronously until no more vertices can be convinced. This paper derives lower bounds on the minimum number of initial seeds, min-seed(n,p,d,r)\mathrm{min\hbox{-}seed}(n,p,\delta,\rho), needed to convince a δ∈{1/n,…,n/n} fraction of vertices at the end. In particular, we show that (1) there is a constant β>0 such that min-seed(n,p,d,r)=W(min{d,r}n)\mathrm{min\hbox{-}seed}(n,p,\delta,\rho)=\Omega(\min\{\delta,\rho\}n) with probability 1−n −Ω(1) for pβ (ln (e/min {δ,ρ}))/(ρ n) and (2) min-seed(n,p,d,1/2)=W(dn/ln(e/d))\mathrm{min\hbox{-}seed}(n,p,\delta,1/2)=\Omega(\delta n/\ln(e/\delta)) with probability 1−exp (−Ω(δ n))−n −Ω(1) for all p∈[ 0,1 ]. The hidden constants in the Ω notations are independent of p.  相似文献   

9.
We consider a novel class of art gallery problems inspired by wireless localization that has recently been introduced by Eppstein, Goodrich, and Sitchinava. Given a simple polygon P, place and orient guards each of which broadcasts a unique key within a fixed angular range. In contrast to the classical art gallery setting, broadcasts are not blocked by the edges of P. At any point in the plane one must be able to tell whether or not one is located inside P only by looking at the set of keys received. In other words, the interior of the polygon must be described by a monotone Boolean formula composed from the keys. We improve both upper and lower bounds for the general problem where guards may be placed anywhere by showing that the maximum number of guards to describe any simple polygon on n vertices is between roughly \frac35n\frac{3}{5}n and \frac45n\frac{4}{5}n . A guarding that uses at most \frac45n\frac{4}{5}n guards can be obtained in O(nlog n) time. For the natural setting where guards may be placed aligned to one edge or two consecutive edges of P only, we prove that n−2 guards are always sufficient and sometimes necessary.  相似文献   

10.
In this paper, we study two variants of the bin packing and covering problems called Maximum Resource Bin Packing (MRBP) and Lazy Bin Covering (LBC) problems, and present new approximation algorithms for them. For the offline MRBP problem, the previous best known approximation ratio is \frac65\frac{6}{5} (=1.2) achieved by the classical First-Fit-Increasing (FFI) algorithm (Boyar et al. in Theor. Comput. Sci. 362(1–3):127–139, 2006). In this paper, we give a new FFI-type algorithm with an approximation ratio of \frac8071\frac{80}{71} (≈1.12676). For the offline LBC problem, it has been shown in Lin et al. (COCOON, pp. 340–349, 2006) that the classical First-Fit-Decreasing (FFD) algorithm achieves an approximation ratio of \frac7160\frac{71}{60} (≈1.18333). In this paper, we present a new FFD-type algorithm with an approximation ratio of \frac1715\frac{17}{15} (≈1.13333). Our algorithms are based on a pattern-based technique and a number of other observations. They run in near linear time (i.e., O(nlog n)), and therefore are practical.  相似文献   

11.
Power optimization is a central issue in wireless network design. Given a graph with costs on the edges, the power of a node is the maximum cost of an edge incident to it, and the power of a graph is the sum of the powers of its nodes. Motivated by applications in wireless networks, we consider several fundamental undirected network design problems under the power minimization criteria. Given a graph G=(V,E)\mathcal{G}=(V,\mathcal{E}) with edge costs {c(e):e∈ℰ} and degree requirements {r(v):vV}, the Minimum-Power Edge-Multi-Cover\textsf{Minimum-Power Edge-Multi-Cover} (MPEMC\textsf{MPEMC} ) problem is to find a minimum-power subgraph G of G\mathcal{G} so that the degree of every node v in G is at least r(v). We give an O(log n)-approximation algorithms for MPEMC\textsf{MPEMC} , improving the previous ratio O(log 4 n). This is used to derive an O(log n+α)-approximation algorithm for the undirected $\textsf{Minimum-Power $\textsf{Minimum-Power ($\textsf{MP$\textsf{MP ) problem, where α is the best known ratio for the min-cost variant of the problem. Currently, _boxclosen-k)\alpha=O(\log k\cdot \log\frac{n}{n-k}) which is O(log k) unless k=no(n), and is O(log 2 k)=O(log 2 n) for k=no(n). Our result shows that the min-power and the min-cost versions of the $\textsf{$\textsf{ problem are equivalent with respect to approximation, unless the min-cost variant admits an o(log n)-approximation, which seems to be out of reach at the moment.  相似文献   

12.
In Dijkstra (Commun ACM 17(11):643–644, 1974) introduced the notion of self-stabilizing algorithms and presented three such algorithms for the problem of mutual exclusion on a ring of n processors. The third algorithm is the most interesting of these three but is rather non intuitive. In Dijkstra (Distrib Comput 1:5–6, 1986) a proof of its correctness was presented, but the question of determining its worst case complexity—that is, providing an upper bound on the number of moves of this algorithm until it stabilizes—remained open. In this paper we solve this question and prove an upper bound of 3\frac1318 n2 + O(n){3\frac{13}{18} n^2 + O(n)} for the complexity of this algorithm. We also show a lower bound of 1\frac56 n2 - O(n){1\frac{5}{6} n^2 - O(n)} for the worst case complexity. For computing the upper bound, we use two techniques: potential functions and amortized analysis. We also present a new-three state self-stabilizing algorithm for mutual exclusion and show a tight bound of \frac56 n2 + O(n){\frac{5}{6} n^2 + O(n)} for the worst case complexity of this algorithm. In Beauquier and Debas (Proceedings of the second workshop on self-stabilizing systems, pp 17.1–17.13, 1995) presented a similar three-state algorithm, with an upper bound of 5\frac34n2+O(n){5\frac{3}{4}n^2+O(n)} and a lower bound of \frac18n2-O(n){\frac{1}{8}n^2-O(n)} for its stabilization time. For this algorithm we prove an upper bound of 1\frac12n2 + O(n){1\frac{1}{2}n^2 + O(n)} and show a lower bound of n 2O(n). As far as the worst case performance is considered, the algorithm in Beauquier and Debas (Proceedings of the second workshop on self-stabilizing systems, pp 17.1–17.13, 1995) is better than the one in Dijkstra (Commun ACM 17(11):643–644, 1974) and our algorithm is better than both.  相似文献   

13.
We consider the optimal makespan C(P, m, i) of an arbitrary set P of independent jobs scheduled with i preemptions on a multiprocessor with m identical processors. We compare the ratio for such makespans for i and j preemptions, respectively, where i < j. This ratio depends on P, but we are interested in the P that maximizes this ratio, i.e. we calculate a formula for the worst case ratio G(m, i, j) defined as G(m,i,j)=max\fracC(P,m,i)C(P,m,j),{G(m,i,j)=\max \frac{C(P,m,i)}{C(P,m,j)},} where the maximum is taken over all sets P of independent jobs.  相似文献   

14.
A set A is nontrivial for the linear-exponential-time class E=DTIME(2 lin ) if for any k≥1 there is a set B k ∈E such that B k is (p-m-)reducible to A and Bk ? DTIME(2k·n)B_{k} \not\in \mathrm{DTIME}(2^{k\cdot n}). I.e., intuitively, A is nontrivial for E if there are arbitrarily complex sets in E which can be reduced to A. Similarly, a set A is nontrivial for the polynomial-exponential-time class EXP=DTIME(2 poly ) if for any k≥1 there is a set [^(B)]k ? EXP\hat{B}_{k} \in \mathrm {EXP} such that [^(B)]k\hat{B}_{k} is reducible to A and [^(B)]k ? DTIME(2nk)\hat{B}_{k} \not\in \mathrm{DTIME}(2^{n^{k}}). We show that these notions are independent, namely, there are sets A 1 and A 2 in E such that A 1 is nontrivial for E but trivial for EXP and A 2 is nontrivial for EXP but trivial for E. In fact, the latter can be strengthened to show that there is a set A∈E which is weakly EXP-hard in the sense of Lutz (SIAM J. Comput. 24:1170–1189, 11) but E-trivial.  相似文献   

15.
In this paper we study collective additive tree spanners for special families of graphs including planar graphs, graphs with bounded genus, graphs with bounded tree-width, graphs with bounded clique-width, and graphs with bounded chordality. We say that a graph G=(V,E) admits a system of μ collective additive tree r -spanners if there is a system $\mathcal{T}(G)In this paper we study collective additive tree spanners for special families of graphs including planar graphs, graphs with bounded genus, graphs with bounded tree-width, graphs with bounded clique-width, and graphs with bounded chordality. We say that a graph G=(V,E) admits a system of μ collective additive tree r -spanners if there is a system T(G)\mathcal{T}(G) of at most μ spanning trees of G such that for any two vertices x,y of G a spanning tree T ? T(G)T\in\mathcal{T}(G) exists such that d T (x,y)≤d G (x,y)+r. We describe a general method for constructing a “small” system of collective additive tree r-spanners with small values of r for “well” decomposable graphs, and as a byproduct show (among other results) that any weighted planar graph admits a system of O(?n)O(\sqrt{n}) collective additive tree 0-spanners, any weighted graph with tree-width at most k−1 admits a system of klog 2 n collective additive tree 0-spanners, any weighted graph with clique-width at most k admits a system of klog 3/2 n collective additive tree (2w)(2\mathsf{w}) -spanners, and any weighted graph with size of largest induced cycle at most c admits a system of log 2 n collective additive tree (2?c/2?w)(2\lfloor c/2\rfloor\mathsf{w}) -spanners and a system of 4log 2 n collective additive tree (2(?c/3?+1)w)(2(\lfloor c/3\rfloor +1)\mathsf {w}) -spanners (here, w\mathsf{w} is the maximum edge weight in G). The latter result is refined for weighted weakly chordal graphs: any such graph admits a system of 4log 2 n collective additive tree (2w)(2\mathsf{w}) -spanners. Furthermore, based on this collection of trees, we derive a compact and efficient routing scheme for those families of graphs.  相似文献   

16.
We present a nearly-linear time algorithm for counting and randomly generating simple graphs with a given degree sequence in a certain range. For degree sequence (d i ) i=1 n with maximum degree d max?=O(m 1/4?τ ), our algorithm generates almost uniform random graphs with that degree sequence in time O(md max?) where $m=\frac{1}{2}\sum_{i}d_{i}We present a nearly-linear time algorithm for counting and randomly generating simple graphs with a given degree sequence in a certain range. For degree sequence (d i ) i=1 n with maximum degree d max =O(m 1/4−τ ), our algorithm generates almost uniform random graphs with that degree sequence in time O(md max ) where m=\frac12?idim=\frac{1}{2}\sum_{i}d_{i} is the number of edges in the graph and τ is any positive constant. The fastest known algorithm for uniform generation of these graphs (McKay and Wormald in J. Algorithms 11(1):52–67, 1990) has a running time of O(m 2 d max 2). Our method also gives an independent proof of McKay’s estimate (McKay in Ars Combinatoria A 19:15–25, 1985) for the number of such graphs.  相似文献   

17.
Recall that Lebesgue’s singular function L(t) is defined as the unique solution to the equation L(t) = qL(2t) + pL(2t ? 1), where p, q > 0, q = 1 ? p, pq. The variables M n = ∫01t n dL(t), n = 0,1,… are called the moments of the function The principal result of this work is \({M_n} = {n^{{{\log }_2}p}}{e^{ - \tau (n)}}(1 + O({n^{ - 0.99}}))\), where the function τ(x) is periodic in log2x with the period 1 and is given as \(\tau (x) = \frac{1}{2}1np + \Gamma '(1)lo{g_2}p + \frac{1}{{1n2}}\frac{\partial }{{\partial z}}L{i_z}( - \frac{q}{p}){|_{z = 1}} + \frac{1}{{1n2}}\sum\nolimits_{k \ne 0} {\Gamma ({z_k})L{i_{{z_k} + 1}}( - \frac{q}{p})} {x^{ - {z_k}}}\), \({z_k} = \frac{{2\pi ik}}{{1n2}}\), k ≠ 0. The proof is based on poissonization and the Mellin transform.  相似文献   

18.
In this paper, we present a theoretical study of several shape approximation problems, called shape rectangularization (SR), which arise in intensity-modulated radiation therapy (IMRT). Given a piecewise linear function f such that f(x)≥0 for any x∈ℝ, the SR problems seek an optimal set of constant window functions to approximate f under a certain error criterion, such that the sum of the resulting constant window functions equals (or well approximates) f. A constant window function W(⋅) is defined on an interval I such that W(x) is a fixed value h>0 for any xI and is 0 otherwise. A constant window function can be viewed as a rectangle (or a block) geometrically, or as a vector with the consecutive a’s property combinatorially. The SR problems find applications in setup time and beam-on time minimization and dose simplification of the IMRT treatment planning process. We show that the SR problems are APX-Hard, and thus we aim to develop theoretically efficient and provably good quality approximation SR algorithms. Our main contribution is to present algorithms for a key SR problem that achieve approximation ratios better than 2. For the general case, we give a \frac2413\frac{24}{13}-approximation algorithm. For unimodal input curves, we give a \frac97\frac{9}{7}-approximation algorithm. We also consider other variants for which better approximation ratios are possible. We show that an important SR case that has been studied in medical literature can be formulated as a k-MST(k-minimum-spanning-tree) problem on a certain geometric graph G; based on a set of geometric observations and a non-trivial dynamic programming scheme, we are able to compute an optimal k-MST in G efficiently.  相似文献   

19.
The generalized windows scheduling problem for n jobs on multiple machines is defined as follows: Given is a sequence, I=〈(w 1, 1),(w 2, 2),…,(w n , n )〉 of n pairs of positive integers that are associated with the jobs 1,2,…,n, respectively. The processing length of job i is i slots where a slot is the processing time of one unit of length. The goal is to repeatedly and non-preemptively schedule all the jobs on the fewest possible machines such that the gap (window) between two consecutive beginnings of executions of job i is at most w i slots. This problem arises in push broadcast systems in which data are transmitted on multiple channels. The problem is NP-hard even for unit-length jobs and a (1+ε)-approximation algorithm is known for this case by approximating the natural lower bound W(I)=?i=1n(1/wi)W(I)=\sum_{i=1}^{n}(1/w_{i}). The techniques used for approximating unit-length jobs cannot be extended for arbitrary-length jobs mainly because the optimal number of machines might be arbitrarily larger than the generalized lower bound W(I)=?i=1n(li/wi)W(I)=\sum_{i=1}^{n}(\ell_{i}/w_{i}). The main result of this paper is an 8-approximation algorithm for the WS problem with arbitrary lengths using new methods, different from those used for the unit-length case. The paper also presents another algorithm that uses 2(1+ε)W(I)+logw max machines and a greedy algorithm that is based on a new tree representation of schedules. The greedy algorithm is optimal for some special cases, and computational experiments show that it performs very well in practice.  相似文献   

20.
The k-set agreement problem is a generalization of the consensus problem: considering a system made up of n processes where each process proposes a value, each non-faulty process has to decide a value such that a decided value is a proposed value, and no more than k different values are decided. It has recently be shown that, in the crash failure model, $\min(\lfloor \frac{f}{k}\rfloor+2,\lfloor \frac{t}{k}\rfloor +1)The k-set agreement problem is a generalization of the consensus problem: considering a system made up of n processes where each process proposes a value, each non-faulty process has to decide a value such that a decided value is a proposed value, and no more than k different values are decided. It has recently be shown that, in the crash failure model, min(?\fracfk?+2,?\fractk?+1)\min(\lfloor \frac{f}{k}\rfloor+2,\lfloor \frac{t}{k}\rfloor +1) is a lower bound on the number of rounds for the non-faulty processes to decide (where t is an upper bound on the number of process crashes, and f, 0≤ft, the actual number of crashes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号