共查询到14条相似文献,搜索用时 109 毫秒
1.
2.
基于小波-模糊神经网络的齿轮箱故障诊断 总被引:1,自引:0,他引:1
根据齿轮箱传动部件故障机理,利用小波变换多分辨率特性和时频局部化特性,提取出故障特征信号;并利用有效的消噪技术,去除噪声干扰.参考专家经验,给出模糊规则及模糊神经网络模型,实现故障推理.并将小波变换和模糊神经网络应用在上海宝钢热轧机的齿轮故障诊断中. 相似文献
3.
基于小波神经网络的开关电源的故障诊断 总被引:1,自引:1,他引:1
以非线性小波Morlet基作为激励函数,形成神经元,结合小波变换与神经网络各自的优点,建立集小波分析与神经网络于一体的紧致型小波神经网络;采用能量分布特征提取方法和改进的BP算法,设计了一种基于小波神经网络的故障诊断系统,并应用于开关电源故障诊断中;对实例电路仿真结果表明,该方法能正确识别各种故障状态,准确率高,系统诊断结果与实际相符,验证了该小波神经网络故障诊断系统的有效性。 相似文献
4.
5.
基于小波包分析及神经网络的汽轮机转子振动故障诊断 总被引:2,自引:0,他引:2
根据Bently实验台所采集的碰摩、松动、不对中、不平衡4种典型汽轮机转子振动故障信号,运用小波包分析方法对其进行能量分析并提取故障特征.分析结果表明:小波包分析与信号能量分解的故障特征提取方法,可以获得汽轮机转子振动的故障状态,有较好的故障区分度;另外由于经过小波包分解再重构后所提取的故障特征参数浓缩了汽轮机转子振动故障的全部信息,而BP神经网络具有优良的非线性映射能力,对提取的故障特征参数应用BP神经网络映射,可对汽轮机转子振动故障进行进一步的诊断.诊断结果表明:基于小波包分析及神经网络的故障诊断方法,具有较高的故障识别能力. 相似文献
6.
7.
为了准确可靠地发现和预测陀螺仪的故障,提出了一种基于RBF小波神经网络的陀螺仪故障检测方法;该方法是将陀螺仪的输出信号进行三层小波包分解,再对分解得到的8个不同频段上的节点进行特征提取,将提取后的8维特征向量作为RBF神经网络的输入;当陀螺仪发生故障时,陀螺仪的输出信号中会产生突变成分,进行训练后的RBF神经网络可以准确地诊断出陀螺仪的故障类型;应用Matlab实现了RBF小波神经网络诊断陀螺仪故障类型的仿真;仿真结果表明,应用RBF小波神经网络进行陀螺仪故障诊断有很好的效果。 相似文献
8.
为了对往复泵的故障进行正确诊断,提出了基于改进型小波神经网络的往复泵故障诊断方法。以往复泵单个泵缸内的压力信号作为系统特征信号通过小波包分解来提取故障特征向量,同时将此特征向量作为改进型神经网络的输入,利用改进型神经网络对故障做进一步的精确实时诊断。文中对小波神经网络采用的优化算法是:动量因子和学习率自适应调整相结合的梯度下降法,该方法可以提高学习速度并增加算法的可靠性。通过对往复泵液力端多故障诊断实例的检验表明,该系统故障诊断正确率达到了93%以上。 相似文献
9.
10.
提出了基于小波多分辨分析和小波包预处理的模拟电路故障诊断方法。该方法用小波作为信号预处理工具,经小波多分辨分析得到N层分解后的低频和高频信号,再利用小波包分析对多分辨分析没有细分的高频信号进一步分解,以达到提高频率分解率的目的。经PCA分析和归一化后的能量作为训练样本送入BP神经网络进行训练。仿真实验表明此方法能够快速有效的对模拟电路的故障进行诊断和定位。 相似文献
11.
基于神经网络的大规模模拟电路故障检测系统 总被引:4,自引:2,他引:4
设计了一个基于小波和神经网络的信号处理系统,该系统主要针对大规模模拟电路故障检测。针对传统诊断技术的局限性,讨论了利用神经网络方法分级诊断大规模模拟电路软故障的方案,通过小波变换提取故障特征,并利用神经网络的非线性映射特性逼近故障诊断模型。诊断结果表明基于人工神经网络的电路故障诊断方法是行之有效的。此方法具有广阔的应用前景,为大规模模拟电路故障诊断提供了新的理论依据和检测方法,并有希望研制成一套高效的检测设备。 相似文献
12.
13.
针对目前神经网络模拟电路故障诊断中存在的难点,提出了基于信息融合思想的多神经网络故障诊断方法;该方法测试电路中节点电压信号、供电电流信号,利用小波变换对检测信号进行预处理,基于主成分分析对特征矢量进行降维,根据模拟电路的不同故障模式分别建立诊断神经网络,用概率统计数据融合方法从多个神经网络中选出最优网络用于诊断故障;通过电路实例验证了新故障诊断方法的有效性,实验结果表明新方法可有效提高故障诊断性能。 相似文献