首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
高铬白口铸铁耐磨性和显微组织的关系   总被引:6,自引:2,他引:6  
研究了高铬白口铸铁亚临界热处理后耐磨性和显微组织的关系。结果表明,高铬铸铁在亚临界热处理过程中C和Cr以M23C6型二次碳化物的形式析出,导致奥氏体Ms点升高,使其在冷却时发生马氏体转变。马氏体的高硬度改善了合金耐磨性。合金耐磨性和合金组织中残留奥氏体含量具有相互对应关系,本试验中此含量为10%左右。当残留奥氏体含量低于10%时,由于(Fe,Cr)23C6发生向M3C型碳化物的原位转变,相应的组织转变为珠光体,导致耐磨性急剧下降。  相似文献   

2.
研究了Mo和Cu对高铬铸铁凝固组织和亚临界热处理硬化行为的影响。研究表明,添加Mo和Cu可以使高铬铸铁的凝固组织获得更多的残留奥氏体。含有Mo和Cu的高铬铸铁在亚临界热处理过程中有明显的二次硬化现象。由于Mo是强碳化物形成元素与碳原子之间有强的相互吸引作用,阻碍碳原子在凝固冷却时碳从奥氏体向液相扩散,使共晶奥氏体的碳含量较高,导致奥氏体的Ms点降低,使得铸态组织获得更多的残留奥氏体。固溶于奥氏体中的Cu对奥氏体中碳在亚临界热处理过程中的析出具有很强的阻碍作用,所以与没有添加Mo和Cu的高铬铸铁比较,添加Mo和Cu的高铬铸铁二次硬化峰的出现需要更高的温度或者更长的保温时间。  相似文献   

3.
研究了不同Cr/C的高铬铸铁经亚临界热处理前后组织与性能的变化规律.结果表明,在亚临界热处理时,Cr/C越高越有利于二次碳化物的析出,越能降低奥氏体的过饱和度,提高M2点转变温度,在空冷时基体中马氏体含量也就越高,材料的力学性能得到提高,进而提高了材料的耐磨性.  相似文献   

4.
研究了高铬铸铁Cr13Mn3MoV2经亚临界与深冷处理后的组织、硬度和耐磨性.结果表明,高铬铸铁的显微组织主要是由奥氏体、马氏体和(Cr,Fe)7C3共晶碳化物组成.高铬铸铁经深冷处理后的硬度明显高于空冷,相比铸态,随着亚临界处理温度从400℃到650℃,其经历了从低于铸态硬度到硬度增大并超过铸态,并且出现二次硬化再到硬度又降低的过程,这主要是在热处理过程中马氏体的回火及残余奥氏体转化为马氏体的结果.在520℃和600℃进行亚临界处理耐磨性最好,而在540℃,其耐磨性能最差,而且硬度与耐磨性没有完全的对应关系.  相似文献   

5.
不同热处理对一种高铬铸铁组织的影响   总被引:3,自引:1,他引:2  
用X射线衍射(XRD)、磁性法和透射电镜(TEM)等方法研究了不同热处理对一种含Mo、Cu高铬铸铁的组织的影响。结果表明:高铬铸铁亚临界处理和去稳处理中,基体会以二次碳化物的形式析出过饱和的碳和合金元素,残余奥氏体发生马氏体转变。在亚临界处理中,处理温度越高,马氏体转变越快;在去稳处理过程中,当温度为1000℃时残余奥氏体量最少,随着处理温度的提高,残余奥氏体反而增多。二次碳化物析出的顺序是首先析出颗粒状的(Fe,Cr)23C6,然后随着保温时间的延长(Fe,Cr)23C6发生原位转变为M3C,基体部分转变为珠光体。  相似文献   

6.
研究了分级保温热处理对高铬白口铸铁组织转变、硬度、冲击韧性及耐磨性的影响。结果表明:高铬白口铸铁分级保温处理中,基体中过饱和的碳和合金元素会以二次碳化物的形式析出,残留奥氏体发生马氏体转变。在1150℃×2 h+890℃×5 h分级保温过程中,随着保温时间的延长有大量二次碳化物析出,首先析出颗粒状的(Cr,Fe)23C6,然后基体和(Cr,Fe)23C6发生原位转变生成片状的(Cr,V)2C和长条状的(Cr,Fe)7C3,有效地提高了合金的硬度、冲击韧性及抗磨损能力。  相似文献   

7.
加V可以细化高铬铸铁的奥氏体晶粒,形成M7C3型碳化物和硬度很高、以V为主的MC型碳化物.由于V促进碳化物析出,有可能在亚临界条件下获得马氏体组织,减少残余奥氏体量,因而可以使铸件不经高温热处理获得高耐磨性.用含V白口铸铁(质量分数为C 3.0%,Si 1.1%,Mn 1.1%,Cr 10.2%,V 8.9%,Mo 0.4%,Ni 0.5%,Cu 1.0%)浇注LPC-Ⅲ型破碎机锤头,经560℃、3 h亚临界热处理后进行使用试验,结果表明,其寿命为高Cr铸铁锤头的3倍.  相似文献   

8.
锰对高铬铸铁凝固组织和亚临界硬化行为的影响   总被引:3,自引:0,他引:3  
采用电子探针、X射线衍射、磁性法和硬度测量等方法研究了两种不同含锰量高铬铸铁的凝固组织和在亚临界处理过程中的硬化行为。结果表明,含锰量分别为2.68%和1.98%的两种高铬铸铁的凝固组织都由奥氏体、马氏体和M7C3型碳化物组成。二者的共晶碳化物数量相当,前者和后者的奥氏体和马氏体含量分别为66.2%、13%和11.8%、68.2%。在亚临界处理中,高铬铸铁出现二次硬化,且前者的二次硬化更明显。这一现象归因于高铬铸铁在亚临界处理过程中所发生的马氏体相变。  相似文献   

9.
热处理对含钨高铬铸铁组织及性能的影响   总被引:4,自引:1,他引:3  
采用金相显微镜、扫描电镜观察微观组织,x射线衍射仪分析相组成,并测定洛氏硬度、冲击韧性及耐磨性,研究了热处理对含钨高铬铸铁组织及性能的影响.结果表明,钨在高铬铸铁基体和碳化物中均匀分布,热处理对钨的分布影响不大,钨能显著提高高铬铸铁的性能.含钨高铬铸铁合理热处理工艺是1050℃奥氏体化淬火,250~350℃回火,在该热处理条件下的组织为马氏体 碳化物 少量残留奥氏体,铬的碳化物类型为Cr7C3、Cr23C6,钨的碳化物有WC1-x、W6C2.54W3C,硬度为62~63 HRC,冲击韧度为7~8 J/cm2,耐磨性比不含钨高铬铸铁显著提高.  相似文献   

10.
一种高铬铸铁亚临界处理的硬化动力学研究   总被引:9,自引:1,他引:8  
王均  孙志平  刘浩怀  高升吉  沈保罗  黄四九 《铸造》2003,52(11):1065-1068
用X射线衍射、磁性法和硬度测量等方法研究了一种C2.8-Crl6.4-Mnl.9-Mo1.5-Cul高铬铸铁的凝固组织和其在亚临界处理过程中的硬化行为。结果表明,该高铬铸铁的凝固组织由奥氏体、马氏体和M7C3型碳化物组成。在亚临界处理过程中,该高铬铸铁要出现二次硬化。这一现象归因于高铬铸铁在亚临界处理过程中所发生的马氏体相变。作者对此进行了深入分析。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号