首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Poly(A) tail shortening by a mammalian poly(A)-specific 3'-exoribonuclease   总被引:1,自引:0,他引:1  
3'-Exonucleolytic removal of the poly(A) tail is the first and often rate-limiting step in the decay of many eucaryotic mRNAs. In a cytoplasmic extract from HeLa cells, the poly(A) tail of mRNA was degraded from the 3'-end. In agreement with earlier in vivo observations, prominent decay intermediates differed in length by about 30 nucleotides. The Mg2+-dependent, poly(A)-specific 3'-exoribonuclease responsible for this poly(A) shortening activity was purified from calf thymus. A polypeptide of 74 kDa copurified with the activity. The deadenylating nuclease (DAN) required a free 3'-OH group, released solely 5'-AMP, degraded RNA in a distributive fashion, and preferred poly(A) as a substrate. At low salt concentration, the activity of purified DAN was strongly dependent on spermidine or other, yet unidentified factors. Under these reaction conditions, DAN was also stimulated by the cytoplasmic poly(A)-binding protein I (PAB I). At physiological salt concentration, the stimulatory effect of spermidine was weak and PAB I was inhibitory. At either salt concentration DAN and PAB I reconstituted poly(A) shortening with the same pattern of intermediates seen in cytoplasmic extract. The properties of DAN suggest that the enzyme might be involved in the deadenylation of mRNA in vivo.  相似文献   

15.
16.
Poly(A)-binding protein, the most abundant eukaryotic mRNP protein, is known primarily for its association with polyadenylate tails of mRNA. In the yeast, Saccharomyces cerevisiae, this protein (Pabp) was found to be essential for viability and has been implicated in models featuring roles in mRNA stability and as an enhancer of translation initiation. Although the mechanism of action is unknown, it is thought to require an activity to bind poly(A) tails and an additional capacity for an interaction with 60 S ribosomal subunits, perhaps via ribosomal protein L46 (Rpl46). We have found that a significant amount of Pabp in wild-type cells is not associated with polyribosome complexes. The remaining majority, which is found in these complexes, maintains its association even in yeast cells deficient in polyadenylated mRNA and/or Rpl46. These observations suggest that Pabp may not require interaction with poly(A) tails during translation. Further treatment of polyribosome lysates with agents known to differentially disrupt components of polyribosomes indicated that Pabp may require contact with some RNA component of the polyribosome, which could be either non-poly(A)-rich sequences of the translated mRNA or possibly a component of the ribosome. These findings suggest that Pabp may possess the ability to bind to ribosomes independently of its interaction with poly(A). We discuss these conclusions with respect to current models suggesting a multifunctional binding capacity of Pabp.  相似文献   

17.
18.
19.
OBJECTIVE: The purpose of this report is to describe the clinical history, treatment, pathology, and imaging in two cases of rare CNS infection caused by free-living amebas. The Naegleria fowleri and Acanthamoeba species cause primary amebic meningoencephalitis and granulomatous amebic encephalitis, respectively. We describe the neuroimaging findings of a case involving a nonspecific cerebral edema pattern in primary amebic meningoencephalitis and a case involving focal enhancing lesions in granulomatous amebic encephalitis. CONCLUSION: Primary amebic meningoencephalitis and granulomatous amebic encephalitis have a grave prognosis and, although rare, should be considered in the differential diagnosis for patients who present with appropriate histories and imaging findings, including nonspecific brain edema on CT in primary amebic meningoencephalitis and focal punctate enhancing lesions in the posterior cranial fossa on T1-weighted MR imaging in granulomatous amebic encephalitis.  相似文献   

20.
Hepatitis C virus (HCV) shows substantial nucleotide sequence diversity distributed throughout the viral genome, with many variants showing only 68-79% overall sequence homology. This has led to problems in diagnosis of HCV using commercial immunoassays. Based on clustering of homologous sequences, various genotypes and subtypes of HCV have been described from different geographical regions. In the present study, 11 isolates from India were genotyped using sequence comparison for part of the non-structural (NS5) and structural (core) regions. Parts of the genome covering 451 bp (nt 9-459) of the core gene and a 249 bp fragment (nt 7959-8207) of the NS5 gene were reverse transcribed and amplified using nested polymerase chain reaction (RT-PCR). The amplified fragments were cloned and sequenced. The classification into genotypes was done on the basis of phylogenetic analysis. Four isolates showed sequence homology to type 1b. Two of the isolates were classified as type 3a. One isolate was classified as type 3b and the remaining four isolates were found to be variants of type 3 but did not belong to any designated subtype. On the basis of phylogenetic analysis two of the unclassified isolates were put into a new subtype of 3 named as 3g. In one of these variants, parts of a 5'-noncoding (5' NCR; 204 bp), envelope-E1 (435 bp), and NS3 (502 bp) regions were also amplified, cloned, and sequenced. This study demonstrates the type 3 variants including a new subtype (3g) to be the major cause of HCV infection in India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号