首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this article we report on some surprising, and we believe new, findings regarding the factors affecting the optical properties (haze) of polyethylene blown and cast films. A comprehensive investigation of blown and cast films made from conventional Ziegler‐Natta catalyzed linear low density polyethylene (LLDPE) as well as metallocene‐catalyzed LLDPE (mLLDPE) resins was conducted. The large majority of the contribution to the total haze in the blown and cast films was observed to come from the surface roughness of the films, with the bulk (internal) contribution being relatively minor. Using a variety of analysis and characterization methods, including atomic force microscopy, small angle light scattering, and wide angle X‐ray scattering, we determined that the surface roughness in these films was a result of the development of distinct spherulitic‐like superstructures formed during the blown or cast film processing. Furthermore, these superstructures were observed only in the mLLDPE blown films, and not in the LLDPE blown films processed at similar conditions. Analysis of the rheological and molecular characteristics of these various mLLDPE and LLDPE resins revealed that the mLLDPE resins exhibited considerably lower molecular weight, narrower molecular weight distribution, lower zero shear viscosity, and lower melt elasticity compared with the LLDPE resins of similar melt index. These observations support our general finding and primary conclusion from this work that in polyethylene blown and cast films made using typical processing conditions, the optical haze properties are adversely affected because of enhanced surface roughness caused by the formation of spherulitic‐like superstructures in polymer melts that possess fast relaxing and low melt elasticity rheological characteristics. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2845–2864, 2000  相似文献   

2.
A systematic investigation on the origin of the haze of LDPE blown films was conducted, aiming to correlate the film haze with the molecular architecture and melt rheological properties. First of all, the haze measurement indicated that the surface haze, rather than the bulk haze, is the dominating factor for the total haze of the investigated films. No spherulitic crystals or other superstructures were observed for the LDPE blown films, implying that the crystallites formed in the film-blowing process are too small to be responsible for the optical haze. Rheological study revealed that the surface roughness was originated from the irregular flow of LDPE melt during the extrusion process. NMR, GPC and parallel-plate rheology were applied to study the molecular architecture of the LDPE resins. It was found that the LDPE sample with higher haze value exhibits distinctly larger portion of higher molecular weight component, broader molar mass distribution, significantly higher side chain branch density.  相似文献   

3.
The low temperature mechanical strength and the modes of failure of low density polyethylene (LDPE) films and hot air slit-seals have been assessed. Seven different LDPEs were blown into thin films (~30μm) and slit-sealed on-line, both the extrusion and sealing being undertaken using commercial equipment. When pulled in tension transverse to the extrusion direction, both the films and the slit-seals exhibited a ductile response at the higher temperatures, while at lower temperatures brittle failures were seen. The ductile-to-brittle transition temperatures were reasonably well defined with the slit-seal embrittling at significantly higher temperatures. The low temperature mechanical performance of LDPE films containing slit-seals is thus controlled by the seal. However, by using seven different LDPE resins with a range of melt flow rates, it was seen, that the low temperature response was enhanced with the low melt flow rate resins. Informed materials selection can therefore enable manufacturers to produce LDPE products containing slit-seals with good low temperature strength.  相似文献   

4.
The molecular weight and its distribution, degree of long chain branching and cooling rate strongly influence crystallinity during processing, which in turn determines the processability and the ultimate properties of the blown film. Generally a decrease in the number of branches and molecular weight of the polymer and the cooling rate results in an increase of the crystallinity. Length of the main chain and extent of branching in low‐density polyethylene (LDPE) are also factors that affect melt rheology and film crystallinity. Long chain branched polyethylene is suitable in the blown film process due to its better melt strength for bubble stability. The objective of this article is to describe the effect of molecular properties (e.g. molecular weight and its distribution, degree of long chain branching etc) of LDPE on film crystallinity at different cooling rates of blown film extrusion. Two different grades of LDPE were selected to investigate molecular characteristics, crystallinity, and rheology. The resins were processed in a blown film extrusion pilot plant using four different cooling rates. Molecular, rheological, and crystalline properties of the resins were key parameters considered in this study. POLYM. ENG. SCI., 47:1983–1991, 2007. © 2007 Society of Plastics Engineers  相似文献   

5.
It is well known that the addition of a small amount of high‐pressure low‐density polyethylene (HP‐LDPE) to linear low‐density polyethylene (LLDPE) can improve the optical properties of LLDPE, and LLDPE/HP‐LDPE blend is widely applied to various uses in the field of film. The optical haziness of polyethylene blown films, as a result of surface irregularities, is thought to be as a consequence of the different crystallization mechanisms. However, not much effort has been directed toward understanding the effect of HP‐LDPE blending on the overall crystallization kinetics (k) of LLDPE including nucleation rate (n) and crystal lateral growth rate (v). In this study, we investigated the effect of blending 20% HP‐LDPE on the crystallization kinetics of LLDPE polymerized by Ziegler‐Natta catalyst with comonomer of 1‐butene. Furthermore, by combining depolarized light intensity measurement (DLIM) and small‐angle laser light scattering (SALLS), we have established a methodology to estimate the lateral growth rate at lower crystallization temperatures, in which direct measurement of lateral growth by polarized optical microscopy (POM) is impossible due to the formation of extremely small spherulites. This investigation revealed that HP‐LDPE blending leads to enhanced nucleation rate, reduced crystal lateral growth rate, and a slight increase in the overall crystallization kinetics of pure LLDPE. From the estimated crystal lateral growth rate, it was found that the suppression in v from HP‐LDPE blending is larger at lower temperatures than at higher temperatures. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
This article reports a facile approach for industrial‐scale manufacturing of multilayer coextrusion‐blown films by developing a novel rotation homogenization distribution (RHD) method. Materials in this unique process are subjected to a flow field combining both shear circulation and pressure flow. In RHD, circumferential shear causes a laminar flow, where the stable interface between layers can be obtained, and assigns melt evenly to the entire circumferential direction. This equipment has been used to prepare multilayer low‐density polyethylene (LDPE) films under various shear rates by altering the mandrel rotation speed. The effects of mandrel rotation speed on the microstructure, morphology, and properties of bilayer LDPE films were investigated. Multilayer LDPE films with superior interfacial stability and uniform layer distribution, which differ from the multiple melt channels in conventional multilayer coextrusion blown facilities, were successfully fabricated using the proposed equipment. Evident enhancements were observed in thermal shrinkage and mechanical properties of the multilayer films, especially in the transverse direction. © 2018 Society of Plastics Engineers POLYM. ENG. SCI., 59:E339–E349, 2019. © 2018 Society of Plastics Engineers  相似文献   

7.
Two low-density polyethylenes, a linear low-pressure (LLDPE) and a branched high-pressure (LDPE), have been compared. Their shear and extensional behavior and melt fracture phenomena have been investigated, and some mechanical and optical properties of their blown films have been measured. The rheological analysis showed major differences between the samples, both in shear viscosity and in elongational viscosity. The LLDPE exhibited two types of melt fracture, the first of which—a fine scale extrudate roughness—was not shown by the LDPE and appeared at a very low shear rate. The concomitance in LLDPE of a high shear viscosity and a low elongational viscosity and the presence of melt fracture at low shear rate resulted in its more difficult processing into film. The mechanical properties of the LLDPE film approached those of high-density polyethylene while the optical characteristics were in the range of LDPE. Such a coexistence of properties makes LLDPE an interesting material for film production.  相似文献   

8.
X.M Zhang  S Elkoun  A Ajji  M.A Huneault 《Polymer》2004,45(1):217-229
Different types of polyethylene blown films (HDPE, LDPE, LLDPE) differ significantly in the ratio between machine and transverse direction tear resistance. In this paper, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) blown films at different draw-down ratios are studied, and the relation between crystalline structure and anisotropy of blown film properties is investigated. The crystalline morphology and orientation of HDPE, LDPE, LLDPE blown films were probed using microscopy and infrared trichroism. Significant differences in crystalline morphology were found: at medium DDR HDPE developed a row-nucleated type morphology without lamellar twisting, LDPE showed rod-like crystalline morphology and turned out to the row-nucleated structure with twisted lamellae at high draw-down ratio (DDR), while a spherulite-like superstructure was observed for LLDPEs at all processing conditions. They also showed quite different orientation characteristics corresponding to different morphologies. The morphologies and orientation structure for LDPE, LLDPE and HDPE are related to the stress applied (DDR) and their relaxations in the flow-induced crystallization process, which determine the amount of fibrillar nuclei available at the time of crystallization and therefore, the final crystalline morphology. These structure differences are shown to translate into different ratios of machine and transverse direction tear and tensile strengths.  相似文献   

9.
In an earlier publication we showed that the optical haze properties of blown and cast polyethylene (PE) films were adversely affected (i.e., haze increased) as a result of enhanced surface roughness caused by the formation of distinct optically anisotropic “spherulitic‐like” superstructures. In this report we have found that for a very wide variety of PE blown films, the total haze percent exhibited a complex parabolic relationship with the logarithm of the recoverable shear strain parameter, γ. At low values of γ, superstructures were developed (as discussed in our previous report) that increased surface roughness and hence total haze. As γ increased, such superstructures were either significantly diminished in size or altogether absent, giving rise instead to an oriented, row‐nucleated, stacked lamella texture that decreased surface roughness and hence total haze. However, at even higher γ values, representing highly melt elastic behavior, fine‐scale surface roughness due to high melt elastic instabilities was induced, thereby increasing surface roughness and consequently total haze as well. It was demonstrated in this work that two PE resins could exhibit the same level of total haze as a consequence of two completely different mechanisms or origins. Furthermore, we believe that this is the first time that both very low and very high melt elasticity have been shown as primary causative factors in yielding high haze in PE blown films, albeit for fundamentally very different reasons. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2396–2411, 2002  相似文献   

10.
We have investigated the morphological, thermal, barrier, and mechanical properties of low-density polyethylene/ethylene–vinyl alcohol blend (LDPE/EVOH; 85/15 wt%) in highly and biaxially oriented blown films. Maleic anhydride-grafted linear low-density polyethylene (LDPE-g-MAH) in various concentrations (from 0 to 10 phr) was used as the compatibilizer for the immiscible system. Thermal analysis of the blend films shows that their melting temperatures, crystallization temperatures, and heats of fusion stay almost constant upon varying the amount of compatibilizer. The addition of the compatibilizer did not adversely affect the inherent properties of the blends, especially their barrier properties, through constraint effects of the grafted EVOH (EVOH-g-LD). The heat of fusion of EVOH obtained during the first heating is much higher than that of the second as a result of stress-induced crystallization during the blown film process. Oxygen permeation measurements show that the oxygen barrier properties of both highly and biaxially oriented blown films decrease upon increasing the amount of compatibilizer, although morphological analysis showed that the blends exhibit better laminar dispersion of the EVOH phase in the LDPE matrix when LDPE-g-MAH is added. The increase in oxygen permeability results from the presence of microvoids at the interface between the two phases during the process. Mechanical measurements showed that there exists an optimal amount of LDPE-g-MAH for maximizing both the tensile and tear properties in both the machine and transverse directions.  相似文献   

11.
Two polyethylene resins (LDPE and HDPE) and their blends were characterized for dynamic shear rheology, extrudate swell in a capillary rheometer, and recoverable strain as measured by the Melt Elasticity Indexer in attempts to compare parameters related to the so-called “melt elasticity” as obtained by different experimental techniques. Such parameters may be useful in screening materials for their melt processability. Data were obtained at equivalent shear rates/frequencies and different temperatures. With respect to the individual blend components, the LDPE resin with the lower Melt Index (MI) had higher storage modulus and Weissenberg number than the HDPE resin. However, by using criteria based on “recoil” and strain recovery, ranking was different with the LDPE resin shown to exhibit lower “melt elasticity.” In this case, extrudate swell data were found to correlate reasonably well with equilibrium recoverable strain data. With respect to blends, complex viscosity and storage modulus versus composition curves showed positive deviations from linearity, similar to those observed in melt heterogeneous blends. Similarities between the short time recoverable strain vs. composition and the storage modulus vs. composition curves suggest that similar morphological states may exist in the melt over the experimental times and conditions applicable to these different experimental techniques.  相似文献   

12.
Melt How data has been determined for a series of fractionated and whole low density polyethylenes which has been characterized in terms of their molecular weights and degree of long-chain branching, (LCB). The resulting data indicate that low LCB influences melt flow both through a reduction in molecular size and an increased level of intermolecular interaction. Die swell measurements on whole polymers indicate an increase in melt elasticity with increase in degree of LCB for samples of similar melt flow (MI). Comparison of GPC data with observed die swell characteristics indicates that die swell is a molecular size dependent property and independent of intermolecular entanglement effects, suggesting that the measurement of elastic properties of LDPE melts will provide a means of determining relative degrees of LCB for commercial resins.  相似文献   

13.
mLLDPE及mLLDPE/LDPE共混物薄膜性能研究   总被引:3,自引:1,他引:2  
研讨了茂金属线型低密度聚乙烯(mLLDPE)薄膜和mLLDPE与低密度聚乙烯(LDPE)共混物薄膜的物理性能和光学性能,并与传统的LLDPE薄膜和LLDPE/LDPE共混物薄膜进行了比较,表明mLLDPE薄膜和mLLDPE/LDPE共混物薄膜的性能优于传统的LLDPE薄膜和LLDP/LDPE共混物薄膜,指出在mLLDPE中混合10%LDPE,对薄膜性能影响不大。  相似文献   

14.
(Low‐density polyethylene) (LDPE)/clay nanocomposites were prepared by melt blending in a twin‐screw extruder by using different mixing methods. Zinc‐neutralized carboxylate ionomer was used as a compatibilizer. Blown films of the nanocomposites were then prepared. The effect of mixing method on the clay dispersion and properties of the nanocomposites was evaluated by wide‐angle X‐ray diffraction analysis, mechanical properties, thermal properties, and barrier properties. The structure and properties of nanocomposites containing different amounts of nanoclay prepared by selected mixing techniques were also investigated. It was found that melt compounding of Surlyn/clay masterbatch with pure LDPE and Surlyn (two‐step‐a method) results in better dispersion and intercalation of the nanofillers than melt mixing of LDPE/Surlyn/clay masterbatch with pure LDPE and surlyn (two‐step‐b method) and direct mixing of LDPE with clay. The films containing ionomer have good barrier properties. A wide‐angle X‐ray diffraction pattern indicates that intercalation of polymer chains into the clay galleries decreases by increasing the clay content. Barrier properties and tensile modulus of the films were improved by increasing the clay content. In addition, tensile strength increased in the machine direction, but it decreased in the transverse direction by increasing the clay content. DSC results showed that increasing the clay content does not show significant change in the melting and crystallization temperatures. The results of thermogravimetric analysis showed that the thermal stability of the nanocomposites decreased by increasing the clay content more than 1 wt%. J. VINYL ADDIT. TECHNOL., 21:60–69, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
Various (low‐density polyethylene)/poly(ethylene‐co‐vinyl acetate) (LDPE/EVA) nanocomposites containing organoclay were prepared by one‐ and two‐step procedures through melt blending. The resultant nanocomposites were then processed via the film blowing method. From the morphological point of view, X‐ray diffraction and optical microscopy studies revealed that although a prevalent intercalated morphology was evident in the absence of EVA, a remarkable increase of organoclay interlayer spacing occurred in the EVA‐containing systems. The advantages of the addition of EVA to the LDPE/organoclay nanocomposites were confirmed in terms of oxygen barrier properties. In other words, the oxygen transmission rates of the LDPE/EVA/organoclay systems were significantly lower than that of the LDPE/organoclay sample. The LDPE/EVA/organoclay films had better mechanical properties than their counterparts lacking the EVA, a result which could be attributed to the improvement of the organoclay reinforcement efficiency in the presence of EVA. Differential scanning calorimetry and thermogravimetric analysis experiments were performed to follow the effects of the EVA and/or organoclay on the thermal properties of LDPE. Finally, the films produced from the two‐step‐procedure compound showed enhanced oxygen barrier properties and mechanical behavior as compared to the properties of the films produced via the one‐step procedure. J. VINYL ADDIT. TECHNOL., 19:132–139, 2013. © 2013 Society of Plastics Engineers  相似文献   

16.
An investigation was performed to determine how optical properties of LDPE blown films changed when the material was subjected to extrusion shearing. In this study, shearing histories were given to the materials by designed extrusion shearing. Recognizable variations take place in haze and gloss of the blown film during the extrusion shearing. Such variations were expressed as a function of the processing index (PI), which was introduced in a preceding paper as a measure of the memory effect of shearing histories of LDPE. This means that the variations originate in a certain change in the cohesive state of the polymer molecules attributable to the shearing.  相似文献   

17.
The change of the processing parameters of a blown film operation alters the mechanical and optical properties of the films. This work studied the influence of some of these parameters on the properties of blown films made of blends of linear low‐density polyethylene (LLDPE) and LDPE. Correlations between the crystalline biaxial orientations of these films and the mechanical properties were found. The crystalline biaxial orientation was measured by IR following the Krishnaswamy approach. The a axis of the unit cell was oriented along the machine direction (MD) at all LDPE concentrations, and it was not affected by the blow‐up ratio (BUR). In contrast, the b axis changed its orientation from orthogonal to MD to along the transverse direction (TD), and it was affected by the BUR. Finally, the c axis changed its orientation from equiplanar between the MD and TD to along the thickness of the film, and it was influenced by the BUR. The decrease of the tensile mechanical properties along the MD with the increase in the amount of LDPE in the blends was attributed to the tilting of the c axis toward the film thickness. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3161–3167, 2006  相似文献   

18.
研究了2种国产电缆绝缘专用低密度聚乙烯(LDPE)2220H(分别记作LDPE A,LDPE B)的分子链段结构、动态流变性能、熔融结晶性能、体积电阻率和直流击穿强度.结果表明:LDPE A的相对分子质量和长支链含量高于LDPE B,相对分子质量分布相近;结晶度和熔融温度较高的LDPE A在较高温度条件下的体积电阻率高...  相似文献   

19.
Melt rheology and mechanical properties in linear low density polyethylene (LLDPE)/low density polyethylene (LDPE), LLDPE/high density polyethylene (HDPE), and HDPE/LDPE blends were investigated. All three blends were miscible in the melt, but the LLDPE/LDPE and HDPE/LDPE blends exibiled two crystallization and melting temperatures, indicating that those blends phase separated upon cooling from the melt. The melt strength of the blends increased with increasing molecular weight of the LDPE that was used. The mechanical properties of the LLDPE/LDPE blend were higher than claculated from a simple rule of mixtures, whiele those of the LLDPE/HDPE blend conformed to the rule of mixtures, but the properties of HDPE/LDPE were less than the rule of mixtures prediction.  相似文献   

20.
以北京燕化石油化工股份有限公司200kt/a管式法低密度聚乙烯(LDPE)装置产品的熔体流动指数范围分类,分析了主要薄膜级产品的分子链结构,研究了薄膜级树脂及其薄膜的力学和老化等性能.并与市场上常用的国内外同类产品进行了对比。结果表明,管式法LDPE薄膜级产品各具特色,如LD104透明性好。乙烯一乙酸乙烯共聚物产品的耐热氧化性能和LD165的光稳定性能优良。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号