首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
针对小型四旋翼无人机姿态解算数据精度低、缺少余度控制、易发散等问题,提出一种基于GPS、三轴陀螺仪加速度计、三轴磁力计的随机加权自适应滤波算法估计无人机姿态;建立四旋翼无人机姿态旋转矩阵,搭建加速度计和磁力计获取无人机姿态信息的模型,以及采用四元数解算法的陀螺仪定姿解算模型;采用随机加权自适应估计法,依据多元函数求极值定理,在保证总体均方差最小的情况下导出最优随机加权因子,进而解算出姿态角信息,提高四旋翼无人机姿态解算滤波精度与稳定性;仿真与试验结果表明:随机加权自适应滤波与平均值滤波算法相比解算精度更高,输出结果更平稳,且无人机各项预期功能均能正常实现,能够满足四旋翼无人机自主飞行的需要。  相似文献   

2.
四旋翼飞行器姿态控制是四旋翼飞行器控制系统的核心. 通过分析四旋翼飞行器的飞行原理,模型建立,设计了四旋翼飞行器的姿态控制系统;在该系统中采用STM32系列处理器作为主控芯片,MPU6050三轴加速度集和三轴陀螺仪惯性测量单元、磁力计等传感器用于姿态信息检测. 本文中传感器使用结构简单的数字接口对数据进行交换,运用模块化的思想对系统进行设计. 使用PID控制算法进行姿态角的闭环控制,最终实验结果表明,在实验平台上四旋翼飞行器飞行效果稳定,系统满足四旋翼飞行器飞行姿态控制的要求.  相似文献   

3.
为实现四旋翼无人机的自主飞行控制,以自主研发的四旋翼无人机为研究对象,设计了速度控制系统;该速度控制系统采用加速度计、角速率陀螺仪和GPS测量数据,并设计卡尔曼滤波器来抑制传感器噪声,同时估计无法测得的状态变量;为了减小无人机的建模误差并提高控制系统鲁棒性,采用了模型参考滑模控制理论设计速度控制器;实验结果表明,该速度控制系统具有良好的跟踪和稳定性能.  相似文献   

4.
四旋翼飞行器由于其简单的机体结构与较为复杂的姿态控制,近年来在军用和民用领域广泛应用。旨在通过四旋翼飞行器飞控平台的搭建,实现对飞行器姿态的稳定控制。首先论述了四旋翼飞行器的飞行原理与机械结构,给出了硬件系统总体结构。在对各功能模块整合的基础上,实现基于多传感器的控制系统硬件电路设计。仿真与实验证明:多传感器使用过程中,通过卡尔曼滤波进行姿态数据的融合,有效地解决了加速度计、陀螺仪易受外界干扰问题,所设计硬件系统在飞行实验中性能稳定,为四旋翼的稳定控制提供了参考。  相似文献   

5.
针对应用三轴陀螺仪和三轴加速度传感器的四旋翼飞行器姿态角测量问题,提出了基于Kalman滤波算法的姿态传感器信号融合方法。该方法将陀螺仪输出的角速度误差作为时变误差处理,认为陀螺仪输出的角速度误差与其所测角速度及上一时刻的角速度输出误差相关,并据此建立陀螺仪测量线性方程,在此基础上,应用Kalman滤波算法,以加速度计输出的姿态角对陀螺仪测量的姿态角进行修正,从而达到姿态角准确测量的目的。实验结果表明:应用Kalman滤波算法对加速度传感器和陀螺仪信号融合后可有效消除姿态角测量累积误差并显著改善姿态角测量的动态特性。  相似文献   

6.
为了解决四旋翼无人机在姿态解算时的高精度和实时性问题,提出了一种基于参数自适应的梯度下降法和互补滤波相结合的多传感器数据融合算法。该算法采用四元数表示姿态信息,利用梯度下降法对磁力计和加速度计数据进行预处理,并根据陀螺仪输出的角速度和外部加速度大小自适应选择梯度下降参数β,再将其和陀螺数据更新后的四元数进行互补滤波用于补偿陀螺的累积误差,解算出三个姿态角。最后设计仿真与实验分析。实验结果表明,相对于传统的梯度下降法和互补滤波法,该算法姿态估计误差小且具有更好的静态和动态性能。  相似文献   

7.
为促进四旋翼无人机的飞行自主性,增强无人监管情况下飞行器主机所具备的避障行进能力,设计基于RFID技术的四旋翼无人机轨迹跟踪控制系统;采用RFID标签识别技术,调制处理既定控制信号,利用标签识别协议,连接微型四旋翼轨迹控制器与内环姿态控制器,通过数据通信链路,提取轨迹跟踪控制所需的传输电子量,完成轨迹跟踪控制系统硬件设计;利用动力系统中的参数辨识策略,确定与轨迹姿态控制相关的物理规律标注,实现四旋翼无人机轨迹跟踪控制;实验结果表明,与机器视觉型控制系统相比,基于RFID技术的控制系统的SSI避障行进指标数值相对较高,全局最大值达到了 79%,四旋翼无人机滚转角平均值为85°,能够有效抑制四旋翼无人机滚转角的数值上升趋势,增强无人监管情况下飞行器主机避障行进能力.  相似文献   

8.
基于卡尔曼滤波的四旋翼飞行器姿态估计和控制算法研究   总被引:1,自引:0,他引:1  
四旋翼飞行器作为无人机的一种,由于其简单气动布局和复杂的动力学模型,在控制领域获得了越来越多的学术关注;本文首先分析了微机电系统惯性测量单元(MEMS IMU)传感器的误差,给出了基于自回归(autoregressive,AR)噪声模型的卡尔曼滤波算法设计;然后根据加速度计和陀螺仪长短周期测量的不同特性,进一步对姿态数据做互补融合,实验表明此算法可以实现良好的滤波效果;基于上面的姿态估计,本文又提出了一种双增益的PD控制算法对飞行器进行姿态控制;最后将姿态估计算法和控制算法应用到实验平台中,可以实现四旋翼在支架上的自主悬停等功能.  相似文献   

9.
四旋翼姿态控制器采用集成了加速度计和陀螺仪的惯性测量单元,实时采集姿态数据,传输给Cortex-M4内核的处理芯片,利用四元数姿态解算方法,对加速度和角速度数据融合解算处理;采用位置式PID控制算法,控制4个无刷电机的转速,实现控制四旋翼飞行器的飞行姿态;建立万向云台调试系统,通过实践调试验证该控制器能实现控制四旋翼姿态的稳定性;稳定飞行时,姿态角的平均振荡范围为5°。  相似文献   

10.
针对四旋翼飞行器飞行过程中的姿态最优估计问题,本着准确、快速的原则,选择了基于陀螺仪、加速度计和电子罗盘的捷联式惯性测量系统.由于这些传感器存在温度漂移和噪声干扰等问题,采用互补滤波算法,通过融合IMU多传感器的数据信号,对测得的姿态数据进行补偿修正,解算出高精度的姿态角.为了验证互补滤波算法的有效性和实用性,通过实际的四旋翼飞行器角度测量系统对互补滤波算法展开研究.结果表明姿态角解算中采用互补滤波算法能够快速、稳定的输出高精度姿态数据,姿态角最大跟踪误差控制在±2°以内,满足四旋翼飞行器飞行控制的要求,成功完成了姿态的最优估计.  相似文献   

11.
目前研究的四旋翼无人机航迹跟踪控制系统跟踪过程不稳定,导致跟踪结果不准确;为此基于MPC设计了一种新的四旋翼无人机航迹跟踪控制系统.通过空中飞行控制器、地面控制器和人工干预器实现了无人机航线的跟踪控制;空中飞行控制器包括GPS导航定位模块、姿态评估模块(MTI)、飞行控制系统计算机,显示模块等;地面控制器探测周围飞行环境,规避障碍物、规划安全航线,传输至空中自主飞行控制系统,包括无线通讯的数据连接电路和地面终端控制模块;人工干预模块能对飞行过程中发生的意外情况进行人工干预以避免突发情况造成危险;以VS2010为开发环境,利用C++软件设计软件流程;利用MPC多变量控制策略,以最优动态轨迹为控制目标,获取无人机的实时飞行状况,设定航线规划流程,实行航线动态规划;实验结果表明,所设计的无人机航迹跟踪控制系统稳定性较好,跟踪控制结果与预期的跟踪控制曲线重合度更高,平均误差控制在1 cm以内.  相似文献   

12.
为解决四旋翼无人机在饱和输入下的轨迹跟踪控制问题,同时兼顾系统存在的参数不确定性和外部风力扰动影响,设计了一种改进的抗干扰自适应鲁棒滑模控制方法;基于六自由度架构,设计四旋翼无人机简化的系统模型,进而降低控制器设计的复杂程度;引入带有误差信号的滑模函数,设计带有误差信号的饱和补偿自适应控制律,同时增加鲁棒控制项,降低由于饱和输入问题带来的抖振影响,并减小参数不确定和外部风力扰动对系统稳定性的影响;系统模型与抗干扰自适应控制律相结合,形成了改进的抗干扰自适应鲁棒滑模控制策略,实现四旋翼无人机的位置轨迹和姿态轨迹的稳定跟踪;最后通过数值仿真与传统PD控制算法进行仿真比较,验证控制方法的有效性和优越性。  相似文献   

13.
针对传统的PID控制方法在对四旋翼无人机进行控制时动态响应差,抗干扰能力低等局限性,不能够满足高精度要求的四旋翼无人机应用场合的问题。本文以四旋翼无人机的姿态控制为研究对象,通过采用基于伪微分反馈(PDF)控制策略来设计其飞行控制器,以提高动态响应性能和抗干扰能力。在对四旋翼无人机数学建模的基础上,将PDF控制策略引入到四旋翼姿态控制中,提出基于四旋翼无人机对象的PDF控制设计方法,并分别完成PID、PDF控制器的设计和动态仿真。通过对仿真结果比较、分析表明PDF控制与PID姿态控制器相比,系统超调量小,具有更好的鲁棒性和抗干扰能力。  相似文献   

14.
针对四旋翼飞行器在不同环境下的飞行稳定性问题,提出反步法和模糊自适应比例积分微分(PID)方法的混合控制方法。该方法根据无人机(UAV)飞行环境和大倾角、大倾角变化率选择当前合适的控制器。在系统未受扰动时,基于Backstepping的控制方法能够完成飞行器的轨迹跟踪;在受扰动时,基于模糊自适应PID能够极大地抑制扰动带来的影响,实现对四旋翼飞行器的精确控制。通过Matlab仿真分析及实际飞行器实验,验证了增稳混合控制器的稳定性。  相似文献   

15.
针对安装有惯性测量单元和摄像机的低成本四旋翼无人机,研究无位置、速度、航向测量情况下的机动目标基于图像的跟踪控制方法.首先,结合无人机的动力学方程在图像空间中推导了系统的误差方程.其次,为克服无航向测量的问题,设计了一种位置控制器,使用图像矩作为反馈输入并输出油门和姿态指令.最后,针对缺少图像速度测量问题,设计了一种super-twisting滑模观测器和控制器,生成的期望姿态和拉力指令无颤振,并通过李雅普诺夫理论证明了控制系统的稳定性.最终无人机通过调整倾斜姿态实现了跟踪飞行,且避免了响应慢的航向调整.跟踪机动目标的仿真结果验证了所提出方法的有效性.  相似文献   

16.
当前在无人机作业过程中,能够根据预设的目的地信息自主控制飞行的模块,在多个最优方案条件下,需要预设复杂约束条件,否则就会存在寻优过程不收敛的问题,导致控制效果不佳。针对这一问题,研究了无人机航迹自主控制模块的改进设计。设计可以采集无人机的位置、速度等飞行信息,并上传至飞行主控器的模块硬件,软件在符合无人机飞行约束与威胁约束的条件下,规划获取后续飞行的最优航迹点。为了保证无人机飞行距离最短、高度最小,将无人机航迹自主控制问题变成优化问题。在面临多个最优方案条件下,构建基于鲸鱼算法的无人机航迹选择模型,以无人机飞行航线代价最小为目的,使用鲸鱼算法求解无人机航迹自主控制方案,完成软件设计。实验结果显示:使用所设计模块后,无人机可自主控制飞行航迹,成功避开静态威胁因素、动态威胁因素安全飞行至目的地。  相似文献   

17.
四旋翼无人机鲁棒自适应姿态控制   总被引:1,自引:0,他引:1  
 四旋翼无人机的姿态控制是自主飞行控制的核心,针对四旋翼姿态易受外界环境干扰和内部参数摄动等不确定性影响的问题,设计了一种鲁棒自适应反步控制器,以提高四旋翼的鲁棒性。建立了四旋翼完整的姿态运动模型,并将其转化为含有广义不确定性的多输入多输出非线性系统。根据该系统满足严格反馈的结构特点,设计了反步控制器; 针对系统中存在的外部干扰和内部参数摄动等不确定性,引入了一类鲁棒自适应函数来抵消该不确定性对系统的影响; 采用非线性跟踪微分器估计虚拟控制量的微分信号,减小了反步控制器设计中普遍存在的“计算膨胀”问题; 通过构造Lyapunov 函数证明闭环系统是稳定且指数收敛的。仿真结果表明,所设计控制器具有良好的控制效果和鲁棒性。  相似文献   

18.
四旋翼微型飞行平台姿态稳定控制试验研究   总被引:3,自引:0,他引:3  
对四旋翼飞行平台姿态稳定控制进行了试验研究,建立了数学模型,在Matlab环境下使用PID控制器进行了模拟仿真研究。基于仿真结果,设计了以TMS320V2808为核心处理器,以MIN-INA900为飞行平台测姿传感组件的飞行试验平台,进行了单通道系留试验和六自由度试验,试验结果表明:PID控制器能够实现对飞行平台姿态的控制。  相似文献   

19.
针对四旋翼无人机轨迹跟踪过程中存在的参数不确定与外界干扰问题,设计一种双闭环自适应控制策略.为了降低控制器设计复杂度,根据四旋翼无人机系统的欠驱动特性将系统分成姿态内环和位置外环.在扰动观测器的基础上,利用积分型反步控制算法完成无人机位置信息在外界干扰下的稳定跟踪控制.在扰动观测器的基础上,利用自适应滑模控制算法完成无...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号