首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
《分离科学与技术》2012,47(9):2022-2040
Abstract

3-Phenyl-4-benzoyl-5-isoxazolone (HPBI) was synthesized and examined with regard to the synergistic solvent extraction behavior of zirconium(IV) and hafnium(IV) in the presence of various crown ethers (CEs), namely, 18-crown-6 (18C6), dicylohexano-18-crown-6 (DC18C6) and benzo-15-crown-5 (B15C5) from hydrochloric acid solutions. The results demonstrated that zirconium(IV) and hafnium(IV) were synergistically extracted into chloroform with mixtures of HPBI and CEs as ZrO(PBI)2 · CE and HfO(PBI)2 · CE, respectively. The complexation strength follows the order DC18C6 >18C6 > B15C5. The addition of CEs not only enhances the extraction efficiency of zirconium(IV) and hafnium(IV) but also significantly, especially in the presence of B15C5, improves the selectivity (Zr/Hf = 4.73) between these metal ions as compared to HPBI alone (Zr/Hf = 2.09). On the other hand, selectivity has been moderately decreased by the addition of 18C6 or DC18C6 to the metal-chelate system.  相似文献   

2.
A series of Keggin-type heteropoly compounds (HPC) having different countercations (Co, Fe) and different addenda atoms (W, Mo) were synthesized and characterized by means of Fourier-Transform Infrared Spectrometer (FT-IR) and X-ray powder diffraction (XRD). The catalytic properties of the prepared catalysts for the dimethyl carbonate (DMC) synthesis from CO2 and CH3OH were investigated. The experimental results showed that the catalytic activity is significantly influenced by the type of the countercation and addenda atoms transition metal. Among the catalysts examined, Co1.5PW12O40 is the most active for the DMC synthesis, owing to the synergetic effect between Co and W. Investigating the effect of the support showed that the least acidic one (Al2O3) enhanced the conversion but decreased the DMC selectivity in favor of that of methyl formate (MF), while that of dimethoxy methane remained stable.  相似文献   

3.
Kiwifruit is moderately sweet and sour and quite popular among consumers; it has been widely planted in some areas of the world. In 2019, the crown gall disease of kiwifruit was discovered in the main kiwifruit-producing area of Guizhou Province, China. This disease can weaken and eventually cause the death of the tree. The phylogeny, morphological and biological characteristics of the bacteria were described, and were related to diseases. The pathogenicity of this species follows the Koch hypothesis, confirming that A. fabacearum is the pathogen of crown gall disease of kiwifruit in China. In this study, Loop-mediated isothermal amplification (LAMP) analysis for genome-specific gene sequences was developed for the specific detection of A. fabacearum. The detection limit of the LAMP method is 5 × 10−7 ng/μL, which has high sensitivity. At the same time, the amplified product is stained with SYBR Green I after the reaction is completed, so that the amplification can be detected with the naked eye. LAMP analysis detected the presence of A. fabacearum in the roots and soil samples of the infected kiwifruit plant. The proposed LAMP detection technology in this study offers the advantages of ease of operation, visibility of results, rapidity, accuracy and high sensitivity, making it suitable for the early diagnosis of crown gall disease of kiwifruit.  相似文献   

4.
This paper presents experimental results of the catalytic ozonation of Songhua River water in the presence of nano-TiO2 supported on Zeolite. The removal efficiency of TOC and UV254, the variation of AOC and molecular weight distribution of organics was studied. Results showed that TOC and UV254 removal efficiency by ozone was improved in the presence of TiO2/Zeolite, and increased by 20% and 25%, respectively. The part of organic compounds less than 1000 Da increased in ozonation, but decreased in catalytic ozonation. The AOC of water increased in catalytic ozonation, and the increase of AOC was particularly obvious when ozone dose increased from 28.8 mg·L?1 to 46.6 mg·L?1. The degradation and transformation of organic compounds was analyzed by means of GC-MS. The total number of organic compounds was reduced from 50 in the untreated water to 36 and 20, respectively, in ozonation and catalytic ozonation. The removal efficiency of the total organic compounds peak area in ozonation and catalytic ozonation were 23.5% and 62.5%, respectively. Most of the hydrocarbons could be removed easily in ozonation and catalytic ozonation. The organic compounds having hydroxyl, carboxyl or carbonyl groups were hard to be removed in ozonation, but could be removed efficiently in the presence of TiO2/Zeolite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号