首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parison formation and inflation behavior of three polyamide 6 resins during extrusion blow molding were investigated using cinematography, a transparent mold, a pinch-off mold and a modified blow pin, which allowed the pressure inside the parison to be determined during inflation. The glass fiber filled polyamide exhibited negligible extrudate swell and significant drawdown, whereas polyolefin modified polyamide exhibited appreciable extrudate swell and relatively small drawdown effects. The inflation behavior of the polyolefin modified polyamide was similar to the behavior of conventional blow molding grade polyolefins, whereas the unmodified and glass filled polyamides exhibited different inflation characteristics. Their inflation behavior at different internal pressures was characterized by decreasing and increasing Hencky strain rates with inflation time at high and low internal blow pressures, respectively. The characterized parison formation and inflation behavior of the polyamides emphasize the importance of rigorous blow moldability experiments and the difficulties associated with linking various rheological material functions to the blow moldability of modified polyamides.  相似文献   

2.
An important factor in the selection of blow molding resins for producing handled bottles is the effective diameter swell of the parison. Ideally, the diameter swell is directly related to the weight swell and would require no separate consideration. In actual practice, the existence of gravity, the finite parison drop time and the anisotropic aspects of the blow molding operation prevent reliable prediction of the parison diameter swell directly from the weight swell. The parison diameter swell is a complex function of the weight swell, the rate of swell and the melt strength. Elements of this function are presented which show the effect of extrusion rate, parison drop time and parison weight. A technique is presented which allows the estimation of local weight and diameter swell ratios. Their direct relationship is confirmed by data obtained on several blow molding resins. The relationship between weight swell and diameter swell is definitely anisotropic. A mathematical model for swell is proposed which incorporates experimentally determined rate constants and swell coefficients. Correlations are given which suggest fundamental relationships between these derived coefficients and basic variables such as resin properties or process conditions. The model's predictive capability is demonstrated by using it to back calculate parison dimensions.  相似文献   

3.
The die swell behavior of PVC melts is a manifestation of melt elasticity and is of considerable commercial as well as fundamental importance. This behavior is a critical issue in extrusion blow molding application where die swell (i.e. parison thickness) needs to be controlled. Advantageously, the addition of high molecular weight acrylic processing aids to PVC provides better die swell control, thus, improving dramatically the processability of PVC. Hence, knowledge of molecular weight variables of such acrylic processing aids is important from both the commercial and rheological point of view. Various acrylic processing aids were prepared by polymerization designed to provide systematic variation of molecular parameters. Molecular weight distribution of the polymers was characterized by GPC, and their die swell behavior in a typical PVC blow molding formulation was determined at 200°C over various range of residence times using different L/D capillary dies. The results are presented showing effects of specific molecular variables.  相似文献   

4.
An experimental program was carried out to study the dynamics of parison swell and development in extrusion-blow molding. Two commercial blow molding grade polyethylene resins were employed in conjunction with an Impco, Model A13-R12 reciprocating screw blow molding machine equipped with a cylindrical bottle mold. Parison weight swell was measured with the aid of a parison pinch-off mold. In order to obtain more reliable and useful information regarding diameter and thickness swell of the parison and the dynamics of parison formation and development, high speed cinematography was employed. Data obtained by this technique are more reliable than results obtained with the pinch-off mold alone. They also give further insight into the phenomena of swell, sag, and parison spring back or recovery.  相似文献   

5.
In our previous study, we calculated the time course of parison length in the parison formation stage, but it could predict only the parison area swell. The next target in our study is to calculate the parison diameter and thickness swell. Annular extrudate swell simulation is necessary for the understanding of various kinds of swelling ratios in blow molding. We have examined three kinds of swells (outer diameter, thickness, and area swells) obtained from simulation results of annular extrudate swell, using the Giesekus model, and have developed a method of predicting parison outer diameter and thickness swell values. The predicted values of parison outer diameters are discussed in comparison with experimental data, and reasonable results are obtained by the proposed method. This prediction method could also be applied to the parison formation process using a parison controller. As a result, it is possible to predict approximately the whole process of parison formation by numerical simulation.  相似文献   

6.
Experimental data are reported regarding the dynamics of the blow molding process, including parison formation, growth, and inflation. These data have been obtained with the aid of high speed cinematography and pinch mold experiments, in conjunction with two commercial blow molding polyethylene resins. It is shown that pinch mold experiments alone do not yield accurate data regarding thickness and diameter swell. Furthermore, the inflation process involves decreasing rates of inflation with time, as a result of the rise in viscosity due to the cooling of the parison during inflation. Mathematical procedures are proposed for a first-order estimation of parison length and swell as a function of time and the inflation behavior after clamping. In the absence of more dependable basic procedures, the proposed treatment is employed to estimate the effective transient swell functions for the parison using experimental data obtained under the specified conditions. The mathematical treatment is extended to determine the thickness distribution of the bottle. Good agreement is obtained between experimental and calculated results.  相似文献   

7.
It is critical to quantitatively and reliably characterize the effects of swell and sag phenomena on the final parison dimensions in extrusion blow molding. To achieve this goal, an online image acquisition and analysis technique was developed. The successive images of parison were automatically taken using the online acquisition apparatus. These images were then analyzed by the combined use of the conventional digital image processing method and the new one developed by the authors. So the development of parison diameter and thickness swells with the extrusion time could be determined online. On the basis of the online obtained actual swell values, the pure swell and sag components were quantitatively determined. The developed technique was tested through a series of experiments using several resins under different processing parameters and die types. Shown in the present article were the results for a converging die under three different die gaps and a high‐density polyethylene. Some new phenomena were observed using the proposed technique. The results showed that the technique yields fast and accurate determination of the evolution of diameter, thickness, and length of parison during its extrusion. The technique can be employed as a part of the closed loop control for blow molded part thickness. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2399–2406, 2006  相似文献   

8.
Extrusion of a hot polymer melt through a cooler die zone substantially increases the extrudate swell of some thermoplastics. This effect was examined for commercial samples of low-density polyethylene, polypropylene, and polystyrene. Two conflicting effects come into play during extrusion of a thermoplastic. Colder melt temperatures promote increased extrudate swell, but the same conditions also facilitate molecular disentanglement and reduced melt elasticity and die swell. Since the extrusion process itself may affect the relation between die swell and melt temperature, laboratory-scale measurements for the design of processes like blow molding are better carried out with small-scale screw extruders than with capillary rheometers. For some applications it may be advantageous to use a polymer whose die swell is particularly responsive or unresponsive to die temperature variations. The procedure described in this article can be used effectively to monitor this characteristic.  相似文献   

9.
The simulation of the parison formation process in blow molding has been studied. The flow field was divided into two regions, namely, the extrudate swell region near the die lip and the parison formation region after the exit swell. In the swell region, we predicted the swelling ratio and residual stress distribution for high Weissenberg numbers for steady planar well using the 1-mode Giesekus model. In the parison formation region, the flow is assumed to be an unsteady unaxial elongational flow including drawdown and recoverable swell and is modeled using the 10-mode Giesekus model. We calculated the time course of parison length and thickness distribution, and compare the calculation results of parison length with experimental data. It was found that the predicted values agreed rather well with the experimental values. The calculation results could especially predict the shrink-back, which is the phenomenon where the parison length becomes shorter after the cessation of extrusion, and it was found tat this was caused by the recoverable swell of the parison, which depends on the tensile stress generation in the die. Various flow rates and die geometries were studied and confirmed the reliability and usefulness of the method.  相似文献   

10.
An experimental study was made of the effects of die geometry and extrusion velocity on parison swell for three high-density-polyethylene blowmolding resins. Four annular dies were used: a straight, a diverging, and two converging dies. Diameter and thickness swells were measured as functions of time under isothermal conditions and in the absence of drawdown. This was accomplished by extruding into an oil having the same density and temperature as the extrudate. It was observed that 60 to 80 percent of the swell occurs in the first few seconds and that equilibrium swell is attained only after 5 to 8 minutes have elapsed. The diameter and thickness swells appear to be independent phenomena, as the relationship between them depends strongly on die design. The ranking of the resins in terms of the magnitude of the swell was found to be the same for all die geometries and extrusion rates used.  相似文献   

11.
Optimization of final part thickness distributions is crucial in the extrusion blow molding process in order to minimize resin usage. Prediction of part thickness distributions from basic process and material parameters would be ideal. However, attempts to do so have been unsuccessful, largely because of the inability to predict parison thickness profiles. One must therefore resort to measurement of the parison thickness profile and estimation of the final part thickness distribution by computational methods. This paper describes a new technique for the noncontact estimation of parison thickness profiles in continuous extrusion blow molding. The method accounts for sag and requires no previous knowledge of rheological data. It can be employed on-line for the purposes of process monitoring and control. The approach is based on the measurement of the parison length evolution with time during extrusion, the parison diameter profile, the flow rate, and the melt temperature gradient along the length of the parison. These parameters are utilized in conjunction with a theoretical approach that describes the extrusion of a parison under the effects of swell, sag, and extrusion into ambient conditions. Results are presented for three resins of various molecular weight distributions. The degree of sag is minimal at the top and bottom of the parison, and reaches a maximum near the center of the parison. Results are also presented to demonstrate the versatility of the method under other process conditions, such as varying flow rate, die temperature, and die gap.  相似文献   

12.
The most critical stage in the extrusion blow‐molding process is the parison formation, as the dimensions of the blow‐molded part are directly related to the parison dimensions. The swelling due to stress relaxation and sagging due to gravity are strongly influenced by the resin characteristics, die geometry, and operating conditions. These factors significantly affect the parison dimensions. This could lead to a considerable amount of time and cost through trial and error experiments to get the desired parison dimensions based upon variations in the resin characteristics, die geometry, and operating conditions. The availability of a modeling technique ensures a more accurate prediction of the entire blow‐molding process, as the proper prediction of the parison formation is the input for the remaining process phases. This study considers both the simulated and the experimental effects of various high‐density polyethylene resin grades on parison dimensions. The resins were tested using three different sets of die geometries and operating conditions. The target parison length was achieved by adjusting the extrusion time for a preset die gap opening. The finite element software BlowParison® was used to predict the parison formation, taking into account the swell and sag. Good agreements were found between the predicted parison dimensions and the experimental data. POLYM. ENG. SCI., 2009. Published by Society of Plastics Engineers  相似文献   

13.
A comparative experimental study of extrudate swell from long slit and capillary dies is reported for rheologically characterized polystyrene and polypropylene melts. Generally extrudate swell from a slit is greater than that from a capillary die. At low die wall shear rates it goes to a value of about 1.2 as opposed to about 1.1 found for capillary dies. The onset and character of extrudate distortion have been studied. The experimental results are compared with theories of swell based on unconstrained recovery from Poiseuille flow in these geometries. A detailed analysis of such theories of extrudate swell based on the original work of Tanner has been carried out. The analysis is placed in a more general form which should be valid for a range of die cross-sections.  相似文献   

14.
For two high density polyethylene resins, the isothermal time dependency of extrudate swell has been measured. Very minor differences in the large molecular weight part of the molecular weight distribution, hardly detectable with gel permeation chromatography and low angle laser light scattering techniques, dramatically influence the time dependency of extrudate swell as well as the maximum swell attainable. The presence of larger molecules in sample 802 than in 801 is reflected in a lower short time (after seconds) and a larger long time (after minutes) or maximum extrudate swell value. Extruding the polymers through a capillary die L:D = 30:2 mm into air at ambient temperature allows only the short time swelling behavior to be observed, because cooling and sagging of the strand.  相似文献   

15.
This paper focuses on the overall numerical simulation of the parison formation and inflation process of extrusion blow molding. The competing effects due to swell and drawdown in the parison formation process were analyzed by a Lagrangian Eulerian (LE) finite element method (FEM) using an automatic remeshing technique. The parison extruded through an annular die was modeled as an axisymmetric unsteady nonisothermal flow with free surfaces and its viscoelastic properties were described by a K‐BKZ integral constitutive equation. An unsteady die‐swell simulation was performed to predict the time course of the extrudate parison shape under the influence of gravity and the parison controller. In addition, an unsteady large deformation analysis of the parison inflation process was also carried out using a three‐dimensional membrane FEM for viscoelastic material. The inflation sequence for the parison molded into a complex‐shaped mold cavity was analyzed. The numerical results were verified using experimental data from each of the sub‐processes. The greatest advantage of the overall simulation is that the variation in the parison dimension caused by the swell and drawdown effect can be incorporated into the inflation analysis, and consequently, the accuracy of the numerical prediction can be enhanced. The overall simulation technique provides a rational means to assist the mold design and the determination of the optimal process conditions.  相似文献   

16.
Parison dimensions in extrusion blow molding are affected by two phenomena, swell due to stress relaxation and sag drawdown due to gravity. It is well established that the parison swell and sag are strongly dependent on the die geometry and the operating conditions. The availability of a modeling technique ensures a more accurate prediction of the entire blow molding process, as the proper prediction of the parison formation is the input for the remaining process phases. This study considers both the simulated and the experimental effects of the die geometry, the operating conditions, and the resin properties on the parison dimensions using high density polyethylene. Parison programming with a moving mandrel and the flow rate evolution in intermittent extrusion are also considered. The parison dimensions are measured experimentally by using the pinch-off mold technique on two industrial scale machines. The finite element software BlowParison® developed at IMI is used to predict the parison formation, taking into account the swell, sag, and nonisothermal effects. The comparison between the predicted parison/part dimensions and the corresponding experimental data demonstrates the efficiency of numerical tools in the prediction of the final part thickness and weight distributions. POLYM. ENG. SCI., 47:1–13, 2007. © 2006 Society of Plastics Engineers  相似文献   

17.
An experimental and theoretical study is presented of extrudate swell from short capillary and slit dies. The polymer melts studied were polystyrene and polypropylene. The swell from slit dies is greater than the swell from capillaries. Decreasing die entry angle for capillary dies decreases swell. The argument is made that elongational How existing in the die entry region and for short dies determines extrudate swell. Dimensional analysis arguments are used to relate extrudate swell to a Weissenberg number based on elongational flow at the die entrance and the detailed die geometry. Correlations are developed. The theoretical study is based on unconstrained elastic recovery following elongational How through the die entrance region.  相似文献   

18.
塑料挤出吹塑的机理问题   总被引:5,自引:1,他引:4  
采用不同的方法对挤出吹塑过程的型坯成型、型坯吹胀与制品冷却三阶段的机理问题进行了研究.采用人工神经网络方法预测了受模口温度和挤出流率影响的型坯成型阶段的膨胀.利用建立起来的神经网络模型预示的膨胀与实验结果很吻合,且可在一定范围内,预示不同工艺条件下型坯的直径膨胀和壁厚膨胀,为型坯的直径和壁厚的在线控制提供了理论依据.基于薄膜近似和neo-Hookean本构关系,建立了描述型坯自由吹胀的数学模型,并通过实验方法获得了型坯吹胀的瞬态图象.  相似文献   

19.
《Polymer Composites》2017,38(11):2433-2439
The extrudate swell behavior of polypropylene (PP) composite melts filled with multi‐walled carbon nanotubes (MWCNTs) was studied using a capillary rheometer in a temperature range from 190 to 230°C and at various apparent shear rates varying from 50 to 800 s−1. It was found that the values of the extrudate swell ratio of the composites increased nonlinearly with increasing apparent shear rates, while the values of the extrudate swell ratio decreased almost linearly with increasing temperature. The values of the melt extrudate swell ratio increased approximately linearly with increasing shear stress, while decreased approximately nonlinearly with an increase of the MWCNT weight fraction. In addition, the extrudate swell mechanisms were discussed with observation of the fracture surface of the extrudate using a scanning electronic microscopy. This study provides a basis for further development of MWCNTs reinforced polymer composites with desirable mechanical and thermal properties. POLYM. COMPOS., 38:2433–2439, 2017. © 2015 Society of Plastics Engineers  相似文献   

20.
Extrudate swell behavior of polystyrene (PS) and linear low‐density polyethylene (LLDPE) melts was investigated using a constant shear rate capillary rheometer. Two capillary dies with different design configurations were used, one being a single flow channel and the other being a dual flow channel. A number of extrudate swell related parameters were examined, and used to explain the discrepancies in the extrudate swell results obtained from the single and dual flow channel dies, the parameters including output rate and output rate ratio, power law index, wall shear rate, wall shear stress, melt residence time, pressure drop induced temperature rise, flow channel position relative to the barrel centerline, and the flow patterns. It was found in this work that the power law index (n value) was the main parameter to determine the output rate ratio and the extrudate swell between the large and small holes for the dual flow channel die: the greater the n value the lower the output rate ratio and thus decreased extrudate swell ratio. The differences in the extrudate swell ratio and flow properties for PS and LLDPE melts resulted from the output rate ratio and the molecular chain structure, respectively. The extrudate swell was observed to increase with wall shear rate. The discrepancies in the extrudate swell results from single and dual dies for a given shear rate were caused by differences in the flow patterns in the barrel and die, and the change in the melt velocities flowing from the barrel and in the die to the die exit. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1713–1722, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号