首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of poly(styrene-co-p-stearoyl styrene) copolymers as novel polymeric solid–solid phase-change materials (SSPCMs) were synthesized by the modification of polystyrene with stearoyl chloride. The chemical structure and crystalline morphology of the synthesized copolymers were determined with Fourier transform infrared spectroscopy and polarized optical microscopy, respectively. The thermal energy storage properties and thermal stability of the SSPCMs were investigated with differential scanning calorimetry and thermogravimetric analysis, respectively. In addition, the thermal conductivity of the SSPCMs was measured with a thermal property analyzer. Moreover, thermal cycling tests showed that the copolymers had good thermal reliability and chemical stability after being subjected to 5000 heating/cooling cycles. The synthesized poly(styrene-co-stearoyl styrene) copolymers as novel SSPCMs have considerable potential for thermal energy storage and temperature-control applications. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Poly(styrene-co-p-tert-butyldimethylsilyloxystyrene) copolymers, P(S/p-TBDMSOS), with contents in the substituted comonomer within the 0-50% range were prepared using combined Ph2Zn-CpTiCl3-MAO initiator systems and some of them were used as precursors of poly(styrene-co-p-hydroxystyrene), P(S/p-HOS), copolymers. p-tert-Butyldimethylsilyloxystyrene was synthesized from p-hydroxybenzaldehyde by protecting the hydroxyl group with tert-butyldimethylchlorosilane and converting the aldehyde group into vinyl through the Wittig reaction. The P(S/p-TBDMSOS) copolymers with contents in substituted units equal or higher than 25% were atactic and those with content higher than 5% were amorphous. P(S/p-HOS) copolymers containing up to 20% of hydroxylated units were obtained by full hydrolysis in acidic medium of the corresponding P(S/p-TBDMSOS). The hydroxylated copolystyrenes displayed crystallinity for the whole range of studied compositions and their crystalline structure was essentially similar to that of s-PS homopolymers. The influence of the substituent on the modified-MAO catalyzed copolymerization and on the thermal properties of the resulting copolymers was comparatively examined.  相似文献   

3.
Anionic polymerisations of p-methoxystyrene, p-methylstyrene, p-chlorostyrene and p-cyanostyrene were carried out in tetrahydrofuran (THF) and methylcyclohexane. The block copolymers poly(styrene-b-p-methoxystyrene-b-styrene), poly(styrene-b-p-methylstyrene-b-styrene) and poly(styrene-b-p-cyanostyrene) were also polymerised by using THF as solvent. The initiators included n-butyllithium (n-BuLi) and sodium naphthalenide. The use of both n-BuLi and sodium naphthalenide usually produced higher values of n than were calculated. In the former case this could be explained by the lower reactivity of the initiator, which has been found to aggregate in THF. The molar masses were determined by thermal field-flow fractionation (ThFFF), size exclusion chromatography (s.e.c.) and light scattering (LS). ThFFF and the s.e.c. were used for determining the molar mass distributions. The agreement between the three methods was satisfactory. © 1997 Elsevier Science Ltd.  相似文献   

4.
Macrophotoinitiators based on poly(ethylene glycol)s bearing benzyl tereftalmono amid moieties were synthesized by the reaction of poly(ethylene glycol) (PEG) terminated with terephtaloyl chloride and benzyl amine. The initiators possessing PEG with different molecular weights were used in the photoinduced radical polymerization of styrene (S) and methyl methacrylate (MMA) to yield poly(styrene-b-ethylene glycol-b-styrene) and poly(methyl methacrylate-ethylene glycol-b-methyl methacrylate) triblock copolymers. Characterization of macrophotoinitiators were performed by elemental anlysis, IR and 1H-NMR spectrum. The elemental analysis results agreed with the theoretical values. The IR and 1H-NMR spectra showed that the poly(ethylene glycol) units were reacting with the tereftloyl chloride and benzylamine. Characterization of the block copolymers was carried out by spectral measurements, GPC and fractional precipitation methods. The polydispersities of the block copolymers were observed between 1.2–2.32 for poly(methyl methacrylate-ethylene glycol-b-methyl methacrylate) and 1.25–1.90 for poly(styrene-b-ethylene glycol-b-styrene) from GPC measurements.  相似文献   

5.
The influence of random and block copolymerized structures on the uniaxial elongational viscosity was investigated. The investigated random copolymers were poly(ethylene-random-ethyl methacrylate) with comb-branched structure and poly(styrene-random-acrylonitrile) with linear structure. The studied block copolymers were poly(styrene-block-ethylenebutylene-block-styrene) with linear structure. The elongational viscosities of random copolymers showed strain-hardening properties. The strain-hardening property was influenced little by comonomer contents and depended on whether copolymers had linear or branched structures. In contrast, the elongational viscosities of block copolymers gave strain-softening properties. The strain-softening property was not affected by strain rates and block comonomer ratios. The causes of strain-hardening and -softening properties are discussed from relaxation spectrum and damping function based on the Bernstein–Kearsley–Zapas model. The damping functions of linear and branched random copolymers agreed with those of linear and branched homopolymers, respectively. On the other hand, linear block copolymers exhibited stronger damping than linear homopolymers. It was concluded that strain-hardening and -softening properties in the elongational viscosity of random and block copolymerized structures are correlated with their damping functions. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 69: 1765–1774, 1998  相似文献   

6.
Summary Clay-dispersed nanocomposites have been prepared by simple melt-mixing of two components, i.e. poly(styrene-co-acrylonitrile) copolymers with different contents of acrylonitrile comonomer and two different kinds of organophilic clay (Cloisite? 25A and Cloisite? 30A), with a twin screw extruder. Dispersion behavior of 10-?-thick silicate layers of clay in the nanocomposites was investigated by using an X-ray diffractometer and a transmission electron microscope. It was found that acrylonitrile comonomer incorporated into poly(styrene-co-acrylonitrile) copolymers accelerates intercalation of the copolymers into the galleries of silicate layers modified with an organic intercalant. The faster intercalation of a matrix polymer leads to the better dispersion of silicate layers in the matrix polymer. Received: 1 May 2000/Revised version: 10 July 2000/Accepted: 24 July 2000  相似文献   

7.
We demonstrate that the nanoscopic block copolymer patterns on GaN can enhance light extraction efficiency of GaN-based light emitting diodes. Nanoporous patterns were fabricated on a bare GaN substrate via self-assembly of poly(styrene-b-methyl methacrylate) block copolymers from which PMMA microdomains were selectively removed later on. A bare GaN surface was treated with a photo-crosslinkable thin layer of poly(styrene-r-methyl methacrylate) random copolymers to tune the cylindrical microdomain orientations. The nanoporous block copolymer thin film was controlled to be thicker than its typical repeat period in bulk by incorporating PMMA homopolymer into block copolymer. Consequently, the light extraction efficiency in photoluminescence spectra could be tuned with the thickness of nanopatterned thin film on GaN. This paper is dedicated to Professor Chul Soo Lee on the occasion of his retirement from Korea University.  相似文献   

8.
The synthesis of poly(isobutylene) (PIB)-based triblock copolymers having copolymer end blocks containing styrene and p-methylstyrene (pMSt) repeat units was investigated in an attempt to minimize chain-coupling reactions that occur at the 4-position on styrene repeat units during end block polymerization. Model end block copolymerizations using varying feed ratios of styrene and pMSt were conducted, and it was determined by 1H NMR analysis that the addition of pMSt to the living chain end was favored slightly at low conversion. However, DSC revealed a single Tg that increased with increasing pMSt content verifying the absence of blockiness in the microstructure. Poly[(styrene-co-pMSt)-b-isobutylene-b-(styrene-co-pMSt)] triblock copolymers were synthesized using varying feed ratios of styrene and pMSt. The rate of end block propagation increased with increasing pMSt in the feed, and the end block copolymerizations initiated by PIB displayed longer reaction times and more curvature in their first order plots than did the model end block copolymerizations initiated by TMPCl. This effect was attributed to lower ionization equilibrium constant and higher degree of termination caused by the more non-polar local reaction medium provided by the PIB center blocks in block copolymerization. GPC analysis of the final BCPs revealed a decrease in a high molecular weight peak representing the chain-coupled product as the concentration of pMSt in the feed was increased.  相似文献   

9.
A facile approach to prepare thiol-terminated poly(styrene-ran-vinyl phenol) (PSVPh) copolymers and PSVPh-coated gold nanoparticles is reported with the goal of creating stabilizing ligands for nanoparticles with controlled hydrophilicity. Dithioester-terminated poly(styrene-ran-acetoxystyrene) copolymers were synthesized via RAFT polymerization using cumyl dithiobenzoate as a chain transfer agent. These copolymers were converted to thiol-terminated PSVPh copolymers by a one step hydrazinolysis reaction using hydrazine hydrate to simultaneously convert dithioester-terminal and acetoxy-pendant groups to thiol-terminal and hydroxyl-pendant groups, respectively. Spectroscopic observations including NMR and IR confirm end- and pendant-group conversion. PSVPh-coated gold nanoparticles were synthesized in the presence of a mixture of thiol-terminated PSVPh and PSVPh copolymers containing disulfides as stabilizing ligands in a water/toluene, two-phase system. The size and size distribution of core gold nanoparticles were determined by TEM and image analysis. The hydrodynamic radius of PSVPh-coated gold nanoparticles was also determined by dynamic light scattering experiment, which confirms the particle analysis by TEM. This procedure provides a facile technique to control the polarity and hydrophilicity of metal nanoparticle surfaces and could prove critical in advancing the control of nanoparticle placement in biological and hierarchically ordered systems, such as diblock copolymers.  相似文献   

10.
Tensile properties of poly(butadiene-g-α-methyl styrene) copolymers have been investigated on molded samples. These graft copolymers show thermoplastic elastomer behavior because of their graft copolymer structure. Both modulus and strength increase with increasing α-methyl styrene content and tensile strength is highest at the 45–50% by weight α-methyl styrene level. Tensile strength at elevated test temperatures is considerably higher for these poly(butadiene-g-α-methyl styrene) copolymers than for styrene-butadiene-styrene triblock polymers. This is attributed to the higher glass transition temperature for poly(α-methyl styrene) segments compared to polystyrene segments. The oil acceptance of these graft copolymers appears to depend on the number of loose polybutadiene chain ends. Thus, the tensile strength of oil-extended poly(butadiene-g-α-methyl styrene) copolymers was considerably lower than oil-extended poly(styrene-b-butadiene-g-α-methyl styrene) copolymers even though both copolymers contained equal hard segment contents.  相似文献   

11.
The copolymers of p‐phenylene di{4‐[2‐(allyloxy) ethoxy]benzoate} (p‐PAEB) with n‐propyl methacrylate (PMA) were synthesized. The liquid crystalline behavior and thermal properties of copolymers were studied by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), X‐ray diffractometer (XRD), and torsional braid analysis (TBA). The results of XRD, POM, and DSC demonstrate that the phase texture of copolymers is affected by the composition of liquid crystal units in copolymers. The POM and XRD reveal that liquid crystal monomer (p‐PAEB) and copolymers of p‐PAEB with PMA are all smectic phase texture. The dynamic mechanical properties of copolymers are investigated with TBA. The results indicate that the phase transition temperatures and dynamic mechanical loss peak temperature Tp of copolymers are affected by the composition of copolymers and liquid crystal cross networks. The maximal mechanical loss Tp is 114°C and is decreased with added PMA. The behaviors of phase transition are affected by the crosslinking density, and it is revisable for lightly crosslinking LC polymer networks, but it is nonreversible for the densely crosslinking of LC polymer networks. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Two random copolymers, poly(p-phenylenevinylene-co-2,5-didodecyloxy-p-phenylenevinylene) and poly(2,5-dimethoxy-p-phenylenevinylene-co-2,5-didodecyloxy-p-phenylenevinylene), were synthesized via the chlorine precursor route followed by thermal elimination. One alternating copolymer, poly(p-phenylenevinylene-alt-2,5-didodecyloxy-p-phenylenevinylene), was prepared via the Heck coupling reaction. The effects of molar ratio of monomers on yield and composition of the precursor copolymers were studied. The two precursor copolymers and the alternating copolymer were characterized by gel permeation chromatography, differential scanning calorimetry, elemental analysis, and infrared spectroscopy. The UV-visible absorption spectra and photoluminescence spectra, as well as solubility and conductivity of these copolymers, were compared. © 1998 John Wiley & Sons, Inc. J Appl Polm Sci 68: 937–946, 1998  相似文献   

13.
Summary Alternating propene-carbon monoxide copolymers (P-CO) were melt-blended with polystyrene, poly(styrene-co-acrylonitrile) (SAN), and with poly(styrene-co-maleic anhydride) (SMA). P-CO forms homogeneously miscible blends with SAN containing 25 wt% AN at the investigated blend compositions. The transparent blends have single, intermediate glass transition temperatures that fit the Fox equation. The elastic properties of P-CO at room temperature disappear upon blending with SAN because the T g is driven above RT. Polystyrene and SMA are not miscible with P-CO and form heterogeneous blends with two glass transitions. This demonstrates that both the polarity of the styrenic copolymer and the nature of the comonomer govern its phase behavior. Received: 14 January 1999/Revised version: 19 April 1999/Accepted: 19 April 1999  相似文献   

14.
ABA poly(styrene-b-isoprene) block copolymers with various molecular weights and composition were used as heat activated films in simple overlap glass joints. The influence of bonding temperature on their shear strength at break was investigated. On increase of temperature, the joint resistance for most of the copolymers passed through a maximum, which temperature was dependent on the molecular characteristics of the copolymers. The decrease in melt viscosity or chemical degradation could not explain the data. A morphological interpretation which fits well the present and previous observations is proposed and verified for one copolymer used in this work.  相似文献   

15.
Graft copolymers containing poly(ethylene oxide) side chain attached to maleic anhydride‐alt‐vinyl methyl ether (MA‐VME) copolymer were prepared by coupling MA‐VME and poly(ethylene glycol) monomethyl ether (MPEG) by esterification in DMF at 90°C. MPEG and dodecyl alcohol (DA) were grafted onto MA‐VME copolymer in o‐xylene at 140°C in the presence of p‐toluene sulfonic acid as catalyst. The molecular weights of MPEG were found to influence the rate of the grafting reaction and the final degree of conversion. The graft copolymers were characterized by IR, GPC, and 1H‐NMR. DSC was used to examine thermal properties of the graft copolymers. The analysis indicates that grafts have phase‐separated morphology with the backbone and the MPEG grafts forming separate phases. The properties in aqueous solutions of these grafts were studied with respect to aggregation behavior and viscometric properties. In aqueous solution, the polymers exhibited polyelectrolyte behavior (i.e., a dramatic increase of the viscosity upon neutralization). Graft copolymers with DA have lower viscosities. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1138–1148, 2002  相似文献   

16.
Poly(styrene-co-4-vinylpyridine) random copolymers with different molar composition were synthesized by nitroxide-mediated controlled-radical polymerization using 2,2,5-trimethyl-4-phenyl-3-azahexane-3-nitroxide (TIPNO) as a mediator. We record the matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) spectra under various conditions, and we find (at last) that they show mostly intact ions [using 2(-4-hydroxyphenylazo-)benzoic acid as MALDI matrix]. Spectra are highly resolved, and thus they allow for the determination of all end-groups, even some less-abundant ones. Spectra are dominated by intact “dormant” copolymer chains terminated with TIPNO at one end and with (4-Bromo-phenyl)ethyl group (starting fragment) at the other one. Applying the mass analysis of copolymers (MACO) statistical model to the spectra, we show that the MACO/MALDI-TOF mass spectrometry (MS) analysis can be successfully applied to copolymers having a difference between the mass of the comonomers as small as 1 g mol−1 (the styrene and 4-vinylpyridine units are 104.15 and 105.15 g/mol, respectively), which results in overlapping isotopic patterns. The results are accurate: chemical composition evaluated by means of MS agrees with that calculated by 1H-nuclear magnetic resonance, for all copolymers investigated. This analytical method allows to extract detailed information on the composition of the copolymer samples and their structure. Glass transition temperatures of copolymers were also determined by differential scanning calorimetry. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46976.  相似文献   

17.
High-performance styrenic copolymers with carbon nanotube have invented technical relevance. Polystyrene is used to compensate different deficiencies of carbon nanotube within PS/carbon nanotube composite. Dispersion of carbon nanotube content is essential for enhanced mechanical and thermal performance of styrenic copolymer/carbon nanotube composite. Multiwalled carbon nanotube has been reinforced in styrene-butadiene rubber, nitrile butadiene rubber, hydrogenated nitrile butadiene rubber, poly(styrene-b-isoprene-b-styrene), acrylonitrile butadiene styrene, and other styrenic copolymers to enhance electrical, mechanical, and thermal properties. Viscoelastic and photoactuation study of polystyrene-grafted-multiwalled carbon nanotube has been performed. Different styrene-based copolymers show high resistivity toward high impact and are used in food packaging, electrical devices, medical appliance, construction materials, motor oils, sealants, and household purposes.  相似文献   

18.
Blends based on epoxy resin and random copolymers, poly(styrene-co-allylalcohol) (PS-co-PA), were studied. Two PS-co-PA copolymers, with different hydroxyl content, and a polyallylalcohol (PA) homopolymer were used to analyze the effect of polyalcohol content. The polymers presented similar values of molar mass. The miscibility of noncured mixtures and the thermal transition behavior of cured blends were investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Its morphology was studied using both scanning and transmission electron microscopy (SEM and TEM). While the epoxy/PA blends are homogenous materials, because of the epoxy/hydroxyl reaction, PS-co-PA/epoxy blends shows separated phases. In these blends, the presence of a third glass transition, whose value is an intermediate between those of pure components, and the presence of a well-defined interfacial layer between PS-co-PA domains and epoxy matrix indicates a secondary epoxy/hydroxyl reaction. The modification of epoxy resin with PS-co-PA provides significant increase in the storage modulus measured by DMTA. POLYM. ENG. SCI., 47:1580–1588, 2007. © 2007 Society of Plastics Engineers  相似文献   

19.
We demonstrate a simple methodology to incorporate interacting magnetic nanoparticles (mNPs) into cylinder forming block copolymer templates. Poly(styrene-block-isoprene) (PS-b-PI) with PI cylinders and poly(styrene-block-4vinylpyridine) (PS-b-P4VP) with PS cylinders were used as the block copolymer templates and γ-Fe2O3 NPs coated with oleic acids were pre-synthesized for the interacting mNPs. Regardless of the template block copolymers, the selective location of mNPs and the size of mNP aggregates are clearly altered by changing casting solvents. When good solvents for both blocks were used as casting solvents, mNPs are readily aggregated during the solvent evaporation. In contrast, under selective casting solvents for the minor blocks, the mNPs were selectively trapped into the cylinder domains through the facile inversion of micelles during solvent evaporation. The interplay between mNPs and block copolymers was also tested with different molecular weights of block copolymers.  相似文献   

20.
J.M. Widmaier  G.C. Meyer 《Polymer》1977,18(6):587-590
ABA poly(styrene-b-isoprene) block copolymers with various molecular weight and elastomeric content were used as heat activated adhesives. The shear strength of glass to glass joints was tested. The influence of activation temperature and ageing on shear strength was also examined. Good adhesive and cohesive behaviour was found for copolymers with low total molecular weight and identical block lengths. These results were explained by the fact that phase separation does not easily occur in such copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号