首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of short carbon fibers on static and dynamic properties of thermoplastic elastomeric blends of natural rubber (NR) and high density polyethylene (HDPE) have been studied. Both mechanical and dynamic properties are dependent on fiber concentration. The fiber aspect ratio ranges from 20 to 30. Adhesion between fiber and matrix is evident from the SEM photomicrographs of the failed composites and from variation of relative damping properties. Fiber orientation occurring during processing causes anisotropy in the physical properties. In composites with longitudinally oriented fibers, tensile failure occurs by both fiber pullout and breakage, while in composites with transversely oriented fibers, matrix failure dominates. The incorporation of fibers into the matrix lowers the tan δmax value, but no change in glass transition temperature is observed.  相似文献   

2.
Abstract

Foams made from high density polyethylene (HDPE) and natural rubber (NR) blends, using azodicarbonamide as a chemical blowing agent, have been investigated to establish a relationship between the structure and physical properties. The blends of HDPE, NR, epolene wax, chemical blowing agent, and necessary ingredients were prepared on a two roll mill. Subsequently, foamed structures of the blends were obtained by a single stage compression moulding. Results indicate that foaming process variables, i.e. heating time, blowing agent loading, ratio of HDPE/NR, crosslinking agent loading, and ratio of HDPE/NR at a fixed crosslinking agent loading, affect the physical properties of the foams. Attempts were made to relate such properties as foam density, hardness, tensile strength, elongation at break, tear strength, flexural strength, elastic modulus, and gel content to the foam structure. The foam structure was investigated using optical microscopy, in terms of the average cell size and its distribution.  相似文献   

3.
M. De Sarkar  P.P. De  Anil K. Bhowmick 《Polymer》1998,39(26):6789-6800
New thermoplastic elastomeric blends based on hydrogenated styrene–butadiene rubber (HSBR) and low-density polyethylene (LDPE) were prepared by the melt blending technique. The rheology, structural and mechanical properties were measured as a function of blend composition. The HSBR/LDPE blend had a higher tensile strength, modulus, and work-to-break with low elongation at break compared with those of pure HSBR. X-ray diffraction studies demonstrated co-crystallisation and a remarkable increase in the degree of crystallinity. The improvement in the mechanical properties and the uniform morphology were correlated with the interfacial adhesion and compatibilisation of the HSBR/LDPE blend through ethylene segments. The experimental results for the HSBR/LDPE blends were compared with those for HSBR/high-density polyethylene (HDPE) and SBR/LDPE blends. The mechanical properties of the HSBR/LDPE blend were found to be superior. The results were explained on the basis of morphology and interaction.  相似文献   

4.
The effect of citric acid on the tensile properties of high density polyethylene (HDPE)/natural rubber (NR)/thermoplastic tapioca starch (TPS) blends was investigated. The ratio between HDPE/NR was fixed at 70/30 and used as the matrix system. TPS loadings, after modification with citric acid (TPSCA) and without modification (TPS), were varied from 0 to 30 wt %. The morphologies and tensile properties of HDPE/NR blends were evaluated as a function of TPS loadings. The tensile strength, Young's modulus, and elongation at break were found to decrease with increasing TPS loading. However, a slight improvement in the tensile strength of HDPE/NR/TPSCA blends at 5 and 10 wt % TPS loadings were observed. TPS can be partly depolymerised to produce a low viscosity product when processed with citric acid. TPS with low viscosity can easily disperse in the thermoplastic natural rubber (TPNR) system and reduce the surface tension at the interphase of TPS-HDPE/NR as shown by scanning electron microscopy (SEM). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Effects of polyethylene‐grafted maleic anhydride as a compatibilizer on the tensile properties of (high‐density polyethylene)/(natural rubber)/(thermoplastic tapioca starch) (HDPE/NR/TPS) blends were investigated. The ratio of HDPE/NR was fixed at 70/30, and these materials were blended with TPS in concentrations varying from 5 to 30% by using a Haake Rheomix 600 mixer. Two series of HDPE/NR/TPS blends were prepared, i.e., with and without compatibilizer. Morphology and tensile properties of the HDPE/NR/TPS blends were evaluated as a function of TPS loading. The tensile strength and elongation at break decreased with the increase of TPS content. However, an improvement in the tensile strength was obtained for compatibilized blends as compared to uncompatibilized blends. The degrees of TPS adhesion and dispersion in HDPE/NR blends were revealed by scanning electron microscopy (SEM). Results showed that a smaller‐sized dispersed phase was achieved for compatibilized blends as compared to that for their uncompatibilized counterparts. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

6.
High‐density polyethylene/natural rubber (HDPE/NR) blends filled thermoplastic tapioca starch was studied. In this blend system, thermoplastic starch (TPS) acted as an inert component, and the influence of TPS incorporation was studied in terms of tensile properties and crystallization kinetics. Tensile properties of the blends were affected by the addition of TPS particles, which reflects the incompatibility and lack of adhesion at the interface. The effect of TPS incorporation on the crystallization behavior of the HDPE/NR blends was also evaluated at different predetermined crystallization temperatures. The isothermal crystallization data obtained in this study were analyzed by using the Avrami equation. The Avrami exponent for HDPE/NR and HDPE/NR‐10% TPS blends varied around 2.0 and slightly decreased around 1.8 for HDPE/NR‐30% TPS, implying the nucleation process is heterogeneous and the crystal growth is 2D. J. VINYL ADDIT. TECHNOL., 22:191–199, 2016. © 2014 Society of Plastics Engineers  相似文献   

7.
Blending of high density polyethylene (HDPE), natural rubber (NR), and thermoplastic tapioca starch (TPS) have been studied. Two series of samples having 5–30 wt% of TPS were prepared: (a) unvulcanized blends (control) and (b) dynamically vulcanized HDPE/NR/TPS blends. The composition of the HDPE/NR was constant and fixed at a blend ratio of 70/30. Morphology studies by SEM showed that the TPS particles were homogeneously dispersed and well‐embedded in vulcanized HDPE/NR matrix. The SEM micrographs showed agreement with the tensile strength and elongation at break values. Tensile strength improved significanly when the HDPE/NR/TPS blends were vulcanized by using sulfur curative system. The enhancement in tensile properties is attributed to the crosslinking reaction within the NR phase. J. VINYL ADDIT. TECHNOL., 18:192–197, 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
Natural rubber (NR) composites were prepared by incorporating short oil palm fibers of different lengths (viz., 2, 6, 10, and 14 mm) into natural rubber matrix in a mixing mill according to a base formulation. The curing characteristics of the mixes were studied and the samples were vulcanized at 150°C. The vulcanization parameters, processability characteristics, and tensile properties of these composites were analyzed. The effects of fiber length, orientation, loading, and fiber-matrix interaction on the mechanical properties of the green composites were studied. The reinforcement property of the alkali-treated fiber was compared with that of the untreated one. The extent of fiber orientation was studied from green strength measurements. From anisotropic swelling studies, the extent of fiber alignment and the strength of fiber–rubber interface adhesion were analyzed. Scanning electron microscopic (SEM) studies were carried out to analyze the fiber surface morphology, fiber pullout, and fiber–rubber interface.  相似文献   

9.
This study sought to develop novel elastomeric compounds using natural rubber (NR) and ultra-low-density polyethylene (ULDPE). Blends were prepared by means of a two-roll mill for three ratios (70/30, 60/40, and 50/50 NR/ULDPE). Conventional vulcanization was performed in a compression mold. The physical and mechanical properties of the blend were determined according to ASTM standards. The results were compared with those obtained from NR blended with styrene-butadiene rubber (SBR). The morphological examinations with scanning electron microscopy indicated that ULDPE was compatible with NR; thus, the addition of a compatibilizer was not necessary. The cocontinuous phase was dominant in the NR/ULDPE blend containing 50 and 60 wt % NR. The tensile properties, tear resistance, and aging resistance of the NR/ULDPE blends were found to be superior to those of NR/SBR blends. On the other hand, the abrasion and flex cracking resistances of the NR/ULDPE blend were inferior to those exhibited by SBR blends but the Mooney viscosity and resilience of both blends fell in the same range. However, the addition of dicumyl peroxide appeared to have caused crosslinking of the ULDPE phase in the blend, which in turn increased the tensile properties and abrasion and aging resistance. The properties of the tertiary NR/SBR/ULDPE blend were investigated as well. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 650–660, 2001  相似文献   

10.
Abstract

Blends of ethylene propylene diene terpolymer (EPDM) rubber with thermoplastic polyolefins such as low‐density polyethylene (LDPE), high‐density polyethylene (HDPE), high molecular weight polypropylene (PP), and polypropylene random copolymer grade (PP‐R) were prepared by melt mixing. The physico‐mechanical properties, equilibrium swelling in benzene, and aging properties of the binary blends were investigated, analyzing the effect of the rubber/thermoplastics ratio and the type of the thermoplastic material on these properties. The data obtained indicate that EPDM/PP‐R blend in 20/80 w/w% shows the highest physico‐mechanical properties with improved retained tensile strength at 90°C for 7 days. This blend ratio also gives excellent retained equilibrium swelling in benzene at room temperature for 7 days, although EPDM/LDPE blend in 80/20 w/w% imparts the highest retained elongation at break at 90°C for 7 days.  相似文献   

11.
Attempts have been made to use different amount of ground tire rubber (GTR) powder as a partial substitute for natural rubber (NR) in thermoplastic elastomer based on linear low‐density polyethylene (LLDPE, 60 wt%) and NR (40wt%). Maleic anhydride (MA) and dicumyl peroxide (DCP) were used, during melt mixing of the compound, to modify GTR and vulcanize the rubber phases of the blends. Morphology of the blends was studied by scanning electron microscopy and rheological behavior investigated through rheomechanical spectroscopy. Mechanical properties of the blends were also measured, and the effect of GTR concentration on properties was evaluated. Obtained results showed that modification of GTR with MA and using DCP in the blends containing GTR improves the bonding between GTR and matrix. This leads to a distinctive rheological behavior and enhances tensile strength and elongation at break compared to its corresponding simple blend. It can be said that using of MA and DCP during melt mixing of thermoplastic elastomers based on LLDPE/NR containing GTR, concludes to a better dispersion of GTR and formation of morphology similar to that of a dynamic vulcanized thermoplastic elastomer, which improves interfacial bonding between phases and causes a dramatically increase in mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Natural rubber (NR) was blended with chlorosulfonated polyethylene (CSM) with various formulation and blend ratios (NR/CSM: 80/20 –20/80, wt/wt). Rubber blends were prepared by using a two‐roll mill and vulcanized in a compression mold to obtain the 2 mm‐thick sheets. Tensile properties, tear resistance, thermal aging resistance, ozone resistance, and oil resistance were determined according to ASTM. Compatible NR/CSM blends are derived from certain blends containing 20–30% CSM without adding any compatibilizing agent. Tensile and tear strength of NR‐rich blends for certain formulations show positive deviation from the rule of mixture. Thermal aging resistance depends on formulation and blend ratio, while ozone and oil resistance of the blends increase with CSM content. Homogenizing agents used were Stuktol®60NS and Epoxyprene®25. Stuktol®60NS tends to decrease the mechanical properties of the blends and shows no significant effect on blend morphology. Addition of 5–10 phr of epoxidized natural rubber (ENR, Epoxyprene® 25) increases tensile strength, thermal aging resistance, and ozone resistance of the blends. It is found that ENR acts as a compatibilizer of the NR/CSM blends by decreasing both CSM particle size diameter and α transition temperature of CSM. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 127–140, 2006  相似文献   

13.
The measurement of physical properties of thermoplastic natural rubber (TPNR) of NR–HDPE blends have been made at various compositions of high-density polyethylene (HDPE). The tensile properties and hardness of TPNR improve significantly with the addition of liquid natural rubber (LNR) to the blend. The degree of cross-linking also increases with increasing amount of LNR added. The LNR with molecular weight (Mw) of 50,000 and reactive terminals promotes cross-linking within the rubber phase and grafting of the polyethylene chains onto the rubber matrix system. The maximum stress and strain of the blends measured are about 7.5 MPa and 1000%, respectively. Dynamic mechanical analysis results indicate a single Tg on a tan δ trace at about ?50 and ?55°C for the two types of blends, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
Melt rheology and mechanical properties in linear low density polyethylene (LLDPE)/low density polyethylene (LDPE), LLDPE/high density polyethylene (HDPE), and HDPE/LDPE blends were investigated. All three blends were miscible in the melt, but the LLDPE/LDPE and HDPE/LDPE blends exibiled two crystallization and melting temperatures, indicating that those blends phase separated upon cooling from the melt. The melt strength of the blends increased with increasing molecular weight of the LDPE that was used. The mechanical properties of the LLDPE/LDPE blend were higher than claculated from a simple rule of mixtures, whiele those of the LLDPE/HDPE blend conformed to the rule of mixtures, but the properties of HDPE/LDPE were less than the rule of mixtures prediction.  相似文献   

15.
Effect of polyethylene grafted maleic anhydride (PE-g-MA) on mechanical, thermal and swelling characteristic of high density polyethylene (HDPE)/natural rubber (NR)/thermoplastic tapioca starch (TPS) blends were studied. The measurements from differential scanning calorimetric (DSC), dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA), proved the effectiveness of PE-g-MA as compatibilizer in improving the miscibility between HDPE/NR – TPS blends. A decrement in crystallinity index was found after adding PE-g-MA. It is due to restriction in mobility of the HDPE chains. In the presence of PE-g-MA, the blends have better thermal stability. On top of that, the storage modulus which is reflected to the blend stiffness also increased as indicated the improvement in HDPE/NR – TPS interaction.  相似文献   

16.
Dynamically cured 60/40 NR/HDPE blends with various amounts of phenolic curative were prepared in an internal mixer at 160°C. A simple blend (i.e., the blend without curative) was also prepared using the same materials and blend proportion for comparison purposes. Mechanical, dynamic, and morphological properties; swelling resistance and crosslink density of the blends were investigated. It was found that the thermoplastic vulcanizates (TPVs) gave superior mechanical and dynamic properties than the simple blend. Furthermore, the mechanical properties in terms of elongation at break, modulus and tensile strength and elastic response in dynamic test in terms of storage modulus increased with increased loading amount of the curative. The complex viscosity also increased but the tan δ and tension set decreased with increased loading level of the curative. The crosslink density of the TPVs was estimated based on the elastic shear modulus. It was found that the crosslink density of the blends increased with increased loading levels of the curative while the degree of swelling decreased. This correlated well with the trend of mechanical and dynamic properties. SEM micrographs were used to confirm the level of mechanical and dynamic properties. It was found that the simple blend at a given blend ratio exhibited co‐continuous phase morphology. However, the TPVs showed micron scale of vulcanized rubber domains dispersed in a continuous HDPE matrix. The size of vulcanized rubber domains decreased with increasing amounts of the curative. This led to greater interfacial adhesion between the phase and hence superior mechanical and dynamic properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Melt rheology and mechanical properties of binary blend of low-density polyethylene (LDPE) and high-density polyethylene (HDPE) have been investigated. Four different wt fractions of blends containing LDPE/HDPE (20/80, 40/60, 60/40, and 80/20) were prepared. Cole-Cole plots [storage melt viscosity (η′) vs. loss melt viscosity (η″)] and relation between storage melt viscosity (η′) with frequency (ω) and blend composition were constructed. Miscibility of blends was established from rheological data. Impact strength of the blends increased with increasing LDPE concentration, whereas tensile strength shows the opposite trends. Percentages of the crystallinity of the blends were calculated by both the differential scanning calorimetry and wide-angle X-ray scattering methods, which show that the percentage of crystallinity decreased with increasing LDPE concentration, but the rate of crystallization of HDPE phase was unaffected.  相似文献   

18.
Microcellular (MC) soles based on polybutadiene (BR) and low‐density polyethylene (LDPE) blends for low‐temperature applications were developed. A part of BR in BR–LDPE blend was replaced by natural rubber (NR) for property improvement. The BR–NR–LDPE blend‐based MC sole shows good technical properties. Sulphur curing and DCP curing were tried in BR–LDPE and NR–BR–LDPE blends. Study shows that sulphur‐cured MC sheets possess better technical properties than DCP‐cured MC sheets. 90/10 BR–LDPE and 60/30/10 BR–NR–LDPE blend combinations are found to be suitable for low‐temperature applications. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 277–281, 2000  相似文献   

19.
The effect of compounding method is studied with respect to the rheological behavior and mechanical properties of composites made of wood flour and a blend of two main components of plastics waste in municipal solid waste, low-density polyethylene (LDPE) and high-density polyethylene (HDPE). The effects of recycling process on the rheological behavior of LDPE and HDPE blends were investigated. Initially, samples of virgin LDPE and HDPE were thermo-mechanically degraded twice under controlled conditions in an extruder. The recycled materials and wood flour were then compounded by two different mixing methods: simultaneous mixing of all components and pre-mixing, including the blending of polymers in molten state, grinding and subsequent compounding with wood flour. The rheological and mechanical properties of the LDPE/HDPE blend and resultant composites were determined. The results showed that recycling increased the complex viscosity of the LDPE/HDPE blend and it exhibited miscible behavior in a molten state. Rheological testing indicated that the complex viscosity and storage modulus of the composites made by pre-mixing method were higher than that made by the simultaneous method. The results also showed that melt pre-mixing of the polymeric matrix (recycled LDPE and HDPE) improved the mechanical properties of the wood–plastic composites.  相似文献   

20.
The effects of (a) the chemical modification of water hyacinth fiber by poly(vinyl alcohol) (WHF‐PVA) and (b) loading on the properties of low‐density polyethylene (LDPE)/(natural rubber (NR))/(water hyacinth fiber (WHF)) composites were studied. Mechanical properties, water absorption behavior, morphology, and thermal properties were examined; X‐ray diffraction and infrared spectroscopic analysis were done. The results indicated that LDPE/NR/WHF‐PVA composites had higher values of tensile strength, Young's modulus, melting temperature, and water absorption resistance but lower elongation at break than LDPE/NR/WHF composites. The LDPE/NR/WHF‐PVA composites had better interfacial adhesion between the matrix and the fibers than LDPE/NR/WHF composites, as shown by SEM results. The LDPE/NR/WHF‐PVA composites exhibited lower interparticle spacing than LDPE/NR/WHF composites, a feature which enhanced the interparticle interaction between the water hyacinth fibers and the LDPE/NR matrix. J. VINYL ADDIT. TECHNOL., 19:47–54, 2013. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号