首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven monomers, which varied widely in water solubility and ionic charge, were graft polymerized onto both unswollen starch and starch that had been swollen by heating in water to 60°C. Polymerizations were initiated with ferrous ammonium sulfate hexahydrate–hydrogen peroxide and, where applicable, with ceric ammonium nitrate. Graft copolymers were freed of ungrafted homopolymer by solvent extraction and were characterized by weight percentage of synthetic polymer incorporated in the graft copolymer, molecular weight of grafted branches, and grafting frequency. The influence of starch granule swelling on graft copolymer structure varied with the monomer used and could not be predicted on the basis of water solubility of monomer or its resulting polymer. With acrylonitrile and acrylamide, swollen starch gave higher molecular weight and less frequent grafts than unswollen starch. However, methyl methacrylate, N,N-dimethylaminoethyl methacrylate · HNO3, N-t-butylaminoethyl methacrylate. HNO3, and 2-hydroxy-3-methacryloyloxypropyltrimethylammonium chloride produced less frequent graft of higher molecular weight when starch was unswollen. With acrylic acid, graft molecular weight was independent of starch granule swelling, although grafting was less frequent when swollen starch was used.  相似文献   

2.
Grafting of methyl methacrylate on cellulosic materials by chain transfer under the catalytic influence of azobisisobutyronitrile (AIBN) was extensively studied. The graft yield is influenced by reaction time, temperature, monomer and initiator concentration, reaction medium and nature of the substrate. In general, the grafting reaction shows an induction period after which the polymerisation proceeds rapidly. The graft yield increases and the induction period decreases by rising the reaction temperature from 50 to 70°C. This is also the case when the monomer concentration was increased from 2 to 6%. Increasing the AIBN concentration up to 0.01 M causes a significant enhancement in grafting while further increase brings about a marked fall in the graft yield. Among the reaction media studied, a water/solvent mixture containing 25% of either methanol, ethanol, propanol, butanol or acetone seems to constitute a reaction medium where the monomer and initiator are completely miscible and the swelling of cellulose by water is not hindered by the presence of these solvents. Increasing the solvent ratio in the water/solvent mixture causes a considerable decrease in the graft yield. The polymer content of the cellulosic materials, i. e. the graft yield, follows the order: partially carboxymethylated cotton > cotton treated with 12N sodium hydroxide > cyanoethylated cotton > cotton treated with 0.5 N sodium hydroxide > purified cotton. In addition, proof of grafting was provided by the fractional precipitation method.  相似文献   

3.
The radiation-induced polymerization of acrylamide was studied to prepare a high molecular weight and highly effective polyacrylamide flocculant. Among various solvents, mixtures of water–tert-butyl alcohol and water–acetone were found to be suitable for the synthesis of the high molecular weight polyacrylamide. For polymerization in acetone–water mixtures, the molecular weight of polymer increases with monomer concentration; but at the high concentration, intermolecular imidation of amide groups tends to take place during the polymerization to from crosslinked and water-insoluble polymer. The water-soluble polymer with the largest molecular weight of 6.7 × 106 is produced in the polymerization with monomer concentration of 2.91 moles/1. at 0°C at a dose rate of 6.2 × 102 rad/hr in acetone–water mixture containing 60 vol-% water. The crosslinking of polymer of the formation of water-insoluble polymer could be avoided by the addition of K2CO3 or NaOH to raise the pH of the reaction mixture above 6.5. The flocculation effects were evaluated from sedimentation speed of kaolin suspension and transparency of the separated water. The sedimentation speed is proportional to the intrissic viscosity of the polymer in the range of 4 to 23 dl/g. The polymers prepared in this study show much higher sedimentation speed than commercial polyacrylamide flocculants. The transparency of the separated water is higher than 93%, similar to the results with commercial flocculants.  相似文献   

4.
Homogeneous graft copolymerization of styrene onto cellulose was carried out using a SO2–DEA–DMSO cellulose solvent reaction medium and γ-ray mutual irradiation. The yield of grafted side chain polymer and the homopolymer in this reaction system proved to be polysulfone, a styrene–sulfur dioxide copolymer in which the number of sulfur atoms per polymer chain is 3–3.5. Several characterizations of the graft product were attempted. The graft products were extracted with boiling benzene for 24 hr to remove homopolymer, and then the cellulose backbones were hydrolyzed. After hydrolysis, the polysulfone residues were separated by thin-layer chromatography (TLC) into two components, i.e., attendant homopolysulfone and the true side chain polysulfone having some sugar residues at one of the polymer chain ends. The weight fraction of these components for each graft product was determined by a TLC scanner. The molecular weight of the side chain polysulfone remained constant and significantly lower than that of the homopolysulfone throughout the reaction period. By assuming that no scission of cellulose chains occurred throughout the graft reaction, the number of branches per starting cellulose molecule was assessed to be surprisingly large, ranging from 2.4 to 10.6 at a total dose of 1–8 mR of irradiation. It was also found that percent grafting increased with irradiation time because of an increase in the number of branches per cellulose chain. Furthermore, we succeeded in separating the graft product into ungrafted cellulose and the true graft copolymer containing a small amount of attendant hompolysulfone.  相似文献   

5.
Graft copolymerization of ethyl acrylate/acrylamide onto corn starch using potassium permanganate–citric acid initiation system was investigated. Major factors affecting the polymerization reaction were thoroughly investigated in terms of initiator concentration, monomer concentration, polymerization time, polymerization temperature, and starch/liquor, and the obtained results implied that the polymer yield which were expressed by total monomer conversion, grafting ratio, and grafting efficiency were determined by these factors. The optimum reaction conditions were as follows: starch, 30 g; potassium permanganate (based on weight of starch), 0.1%; citric acid (based on weight of starch), 0.5%; ethyl acrylate, 20%; acrylamide, 0.4 g; time, 3 h; temperature, 40°C; starch/liquor, 1:3. We concluded that the initiator of potassium permanganate–citric acid system could be used as a cheap initiator in manufacturing the starch graft copolymer. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

6.
The radiation-induced copolymerization of the methyl chloride salt of N,N-dimethylaminoethyl methacrylate (DMAEM·MC) with acrylamide (AAm) was used to prepare a cationic polymer flocculant. The polymerization rate increased with increasing dose rate, polymerization temperature, monomer concentration and mole fraction of AAm in the monomer mixture. The molecular weight of the copolymer was also found to increase with monomer concentration and mole fraction of AAm, but at high concentration and fraction of AAm, intermolecular crosslinking tends to occur during the polymerization to form water-insoluble copolymer. A water-soluble copolymer having various molecular weights and cationic strengths can be synthesized by selecting suitable reaction conditions; i.e., this radiation process can provide a much higher molecular weight copolymer with a wide range of cationic strength. The flocculation effect was evaluated using sludge from wastewater of sugar manufacture. It was found that the radiation-polymerized copolymer DMAEM·MC–AAm has an excellent flocculation effect.  相似文献   

7.
超临界二氧化碳协助双单体接枝聚丙烯   总被引:2,自引:0,他引:2  
采用氧化法制备氢过氧化聚丙烯(HPP),然后用超临界二氧化碳(SC CO2)将单体苯乙烯(St)和季戊四醇三丙烯酸酯(PETA)溶胀到HPP颗粒内,再通过热引发将单体接枝到HPP上.考察了溶胀温度、压力、接枝反应温度、时间及单体用量对产物接枝率与单体接枝效率的影响,并采用红外光谱(FT-IR)、热重-差热分析(TG-DTA)、扫描电子显微镜(SEM)对接枝共聚物进行了表征.结果表明,合适的反应条件为30 g聚丙烯和0.5 g过氧化苯甲酰(BP0)在80℃反应2 h生成HPP,HPP与9 g苯乙烯(St)和季戊四醇三丙烯酸酯(PETA)的混合物(St与PETA物质的量之比为1:1)在37℃,8.5 MPa的超临界CO2中溶胀3 h,再在80℃常压下反应8 h,得到双单体接枝聚丙烯,接枝率达到28%,接枝效率大于90%,且PETA和St同时接枝到了PP分子链上,聚合物的耐热性增强.  相似文献   

8.
Steffen Kozempel  Klaus Tauer 《Polymer》2005,46(4):1169-1179
An online multi-angle laser light scattering study of ab initio surfactant-free styrene emulsion polymerization reveals unexpected results regarding the development of the dispersity during the whole reaction starting from mixing styrene and water at reaction temperature. The experimentally observed change in the dispersity, which is an indirect measure of the average characteristic size of the colloidal objects, allows the identification of three characteristic intervals. During interval A the equilibration of styrene in water is characterized by the formation of styrene domains, which increase in number and size until an equilibrium state is reached. This means that there is virtually no homogeneous/molecular styrene in water solution but rather nanodroplets of about 200 nm in diameter (assuming spherical shape) are formed. During interval B, after initiation of the polymerization and particle formation, the dispersity increases again as the average size decreases and the number of scattering objects increases. The polymer particles suck up the monomer from the monomer nanodroplets, which leads to the disappearance of the nanodroplets and to a decrease in the average size. During interval C the average size increases again due to the predominantly growth of the polystyrene particles.  相似文献   

9.
The radiation-induced graft copolymerization of styrene and various kraft softwood lignins was studied. Expression of the results as the usual “per cent graft” was impossible, because grafting caused the lignin to become extractable in solvents for the styrene homopolymer. However, evaluation of the effects of various solvents on the degree of reaction was made through an indirect, and possibly more characteristic, measure. Grafting was least pronounced under conditions of low lignin accessibility (e.g., when less than 10% methanol was present), but increased with the addition of better lignin solvents or with higher methanol concentrations. The precipitating nature of the latter conditions was also found to contribute to an accelerated rate of grafting. Surprisingly, the graft copolymer was found to degrade at higher doses. Proof of grafting is offered in a fractionation scheme. Measurement of the molecular weight of the polystyrene separated from the lignin backbone allows the estimation of approximately one polystyrene graft per lignin molecule in benzene-extractable copolymers. Two glass transition temperatures could be detected in several fractionated copolymers.  相似文献   

10.
A series of experiments were designed and conducted to determine the significance of process parameters in the grafting of styrene and acrylonitrile onto polybutadiene seeds in a semicontinuous emulsion copolymerization system. The significances of the parameters were obtained by comparing the variance ratios, or F values, with F‐distributions. The significance level of each test (α‐value) was obtained by variance analysis. The important process parameters in industrial polymerization processes are usually monomer‐to‐polymer ratio, initiator type and concentration, chain‐transfer agent, and reaction temperature. The target responses were final monomer conversion, grafting degree, grafting efficiency, gel percent, and viscosity‐average molecular weight of free styrene‐acrylonitrile (SAN). The analysis of variance indicated that cumene hydroperoxide as the initiator and reaction temperature had strong effects on the graft structure. Moreover, free SAN molecular weight was significantly affected by the monomer/polymer ratio and cumene hydroperoxide and n‐dodecyl mercaptan as chain‐transfer agents. The raspberry‐like morphology of grafted acrylonitrile‐butadiene‐styrene (ABS) particles and phase separation within the particles were confirmed by transmission electron microscopy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Polymerization of acrylamide monomer was performed at low temperatures using 3-mercaptopropionic acid-cerium(IV) sulfate and 3-mercaptopropionic acid-KMnO4 redox systems in acid aqueous medium. Water soluble polyacrylamides containing 3-mercaptopropionic acid end groups were synthesized. The effects of mole ratio of acrylamide to initiator(nMSA= nCe(IV)), polymerization time, temperature, and concentration of sulfuric acid on the yield and molecular weight of polymer were investigated. The decrease in the mole ratio of acrylamide/Ce(IV) at constant monomer concentration resulted in an increase in the yield but a decrease in molecular weight of polymer. The increase of reaction temperature from 20° to 70°C resulted in a decrease in the yield but indicated generally a constant value for the molecular weight of polymer. With increasing of polymerization time, the yield and molecular weight of polymer did not change mainly. Ce(IV) and Mn(VII) ions are reduced to Ce(III) and Mn(II) ions, respectively in the polymerization reaction. The existence of Ce(III) ion bonded to polymer was investigated by UV-visible spectrometry and fluorescence measurements. The amount of Mn(II) that is incorporated to the polymer was determined using graphite furnace atomic absorption spectrometry. The mechanism of this phenomenon is discussed.  相似文献   

12.
Glycine-Ce(IV) salts and −KMnO4 initiator systems were used for the polymerization of acrylamide, resulting in water-soluble polyacrylamide, which contains amino acid end groups. The dependence of polymerization yields and molecular weights of polymers on the mole ratio of acrylamide monomer to glycine, the polymerization time, the temperature, and the concentration of sulfuric acid were investigated. The decrease in the mole ratio of acrylamide to glycine resulted in a decrese in the molecular weight, and an increase in the yield of acrylamide polymer, which contains a glycine end group. With increasing acid concentration of the polymeric solution, the polymerization yield and the molecular weight of polymer decrease. Ce(IV) and Mn(IV) reduced to Ce(III) and Mn(II) in the polymerization reaction. The amounts of Ce(III) and Mn(II) bound to polymer were determined. The composition of the polymerization product was investigated and a bimodal character of the molecular weight distribution was observed. The mechanism of this phenomena is discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Sagar Pal  A. Pal 《Polymer Bulletin》2012,69(5):545-560
The article highlights the development of a new generation of polymeric flocculant by grafting binary monomer mixture of acrylamide and acrylic acid onto a natural polymer—amylopectin [(AP-g-PAM)-g-PAA]. Primary graft copolymerization of acrylamide onto AP and binary graft copolymerization of acrylic acid onto AP-g-PAM was accomplished in 84 and 91?% grafting efficiency (% GE) using potassium persulphate as initiator. The influence of initiator concentration onto % GE was investigated. The developed binary graft copolymer was characterized using various materials characterization techniques like viscometry, elemental analysis, FTIR spectroscopy, 13C NMR spectroscopy, molecular weight and radius of gyration by Zimm plot using SLS analysis. Flocculation studies reveal that the synthesized binary grafted product is an efficient flocculant, which is because of its higher molecular weight and radius of gyration.  相似文献   

14.
A model is presented for the calculation of the time to vitrify vs. temperature for isothermal polymerization by the chain growth mechanism. The model is based on the glass transition temperature (Tg) rising from its initial value to the reaction temperature. The relationships between Tg and the volume fraction of polymer and monomer, the volume fraction of polymer and the extent of reaction, and the extent of reaction and time are also required. In a plot of temperature vs. time the vitrification curve is generally S-shaped; the time passes through a maximum just above the glass transition temperature. The model applies to linear polymerization in which monomer and high molecular weight polymer are the dominant species, i.e., to chain reactions. In this communication the model is applied to the bulk polymerization of styrene by the free radical mechanism.  相似文献   

15.
The relationship between the chain transfer constant, extent of monomer conversion, and number of branches was derived for the graft copolymerization through chain transfer of growing polymer radicals to the pendent aromatic nitro groups on the trunk polymer. The equation derived enables us to predict the number of branches for a given monomer trunk polymer. The relationship obtained is compared with the experimental data previously reported for the graft copolymerization of styrene onto poly(vinyl p-nitrobenzoate). The value of α′, the ratio of nitro groups with branches to those which are attacked by polystyrene radicals, is less than unity except for the graft copolymers obtained with high initiator concentrations and at early stages of the reaction. This lowering of α′ is attributed to the steric hindrance of branches already formed on the trunk polymer which prevents the attack of polystyrene radicals on the nitro groups and side reactions, such as reaction of the nitroso groups formed as an intermediate with styrene.  相似文献   

16.
Highly viscous systems made up of 70 wt% epoxy resin dissolved in 30 wt% monomer mixtures of acrylic acid and styrene were irradiated with 1.5 MeV electrons to initiate graft copolymerization. The temperature measurement of the systems reveals that the polymerization reaction takes place both during and after the electron-beam exposure of about 5-sec duration. The reaction lasts about 50 sec for a low beam current of 0.6 mA, while for a high beam current of 6.0 mA it lasts merely about 20 sec. The gel permeation chromatography (GPC) measurement of obtained products demonstrates that the molecular weight distribution of ungrafted copolymer of acrylic acid and styrene becomes strikingly broader as the beam current is lowered. The GPC data suggest that the fraction of epoxy resin having a grafted branch increases with an increase in the beam current. All of these results are interpreted in terms of the mobility and the concentration of reactive species such as polymer radicals and low molecular weight free radicals.  相似文献   

17.
Graft copolymers (polystyrene-graft-polyoxyethylene) (PS-graft-PEO) were prepared by the dispersion copolymerization of methacryloyl-terminated polyoxyethylene macromonomer and styrene initiated by an oil-soluble initiator (dibenzoyl peroxide, DBP). The apparent molecular weights of graft copolymers measured by size exclusion chromatography in tetrahydrofuran were found to be proportional to the -0·8th power of DBP concentration. This reaction order supports the termination of growing radicals by a first order radical loss process. The molecular weight distribution estimated from the size exclusion chromatography (SEC) data was found to decrease slightly with DBP concentration and to drop rapidly with macromonomer concentration. This was attributed to chain transfer events and to the increase of particle number: the higher the particle number the lower the monomer concentration in the particles. The bulkiness of the macromonomer molecules and the high segment density around the propagating reaction loci hinder the incorporation of macromonomer molecules into a copolymer growing chain. ©1997 SCI  相似文献   

18.
The effect of radiation dose rate and beating time on the mutual radiation grafting of styrene to unbleached and bleached kraft wood pulp was studied. Companion studies on the effect of beating time, peroxidation grafting, and order of monomer addition on the preirradiation graft copolymerization of acrylamide and diethylaminoethyl methacrylate were conducted on bleached wood pulp. The grafting rate of styrene increased with dose rate, but the kinetics suggests a significant diffusional resistance to the observed grafting rate. The per cent graft measured at fixed grafting conditions decreased markedly as pulp beating (effected prior to grafting) was increased. It is suggested that the decrease in grafting with beating is due to an increase in the accessibility and swelling of the beaten fibers. Dimethylaminoethyl methacrylate appeared to inhibit the grafting of acrylamide, and double grafting had to be used to graft both hydrophilic polymers to the pulp. The mechanical properties of high-yield pulp and groundwood were improved by the addition of the grafted pulps. The double grafts appeared to show promise as fibrous beaten additives for dry strength improvement. The styrenegrafted pulps were found not to respond at all to the beating process.  相似文献   

19.
Copolymerization of styrene with acrylamide was carried out in an emulsifier-free aqueous medium. The resulting latex contained an appreciable amount of acrylamide-rich copolymer in the serum. The copolymerization course was divided into three stages on the basis of the main reaction locus. At first, acrylamide polymerized in preference to styrene in the aqueous phase. Water-soluble growing radicals lost hydrophilicity rapidly and nucleated the particles. After particle formation, styrene polymerized exclusively in the particles until styrene droplets disappeared. The decrease in the concentration of residual styrene monomer caused growing radicals to keep the hydrophilicity for a long time, and polymerization of acrylamide was accelerated in the aqueous phase. Polymerizations at higher temperature and lower pH resulted in prolongation of the first stage of the polymerization, that is, preferential polymerization of acrylamide in the aqueous phase. An increase in the acrylamide fraction in monomer feed caused some decreases in the particle size and its uniformity.  相似文献   

20.
赵建兵  王世兵 《河南化工》2014,31(12):33-36
以甲基丙烯酰氧乙基三甲基氯化铵(DMC)和丙烯酰胺(AM)为聚合单体,以亚硫酸氢钠和过硫酸铵为引发剂,通过水溶液聚合法聚合得到阳离子聚丙烯酰胺(CPAM)。考察了聚合单体的质量分数、引发剂的用量、反应时间、反应温度及p H等因素对聚合物相对分子质量的影响。实验结果表明,合成高相对分子质量的CPAM的较优聚合条件是:聚合单体的质量分数为15%,引发剂0.3%,反应温度80℃,p H值为7,反应时间为3 h,相对分子质量可达5.91×106。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号