首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Time course studies revealed that the combination of Flt-3 ligand (FL), Steel factor (SF) and interleukin-3 (IL-3) did not elicit as large an amplification of the long-term culture-initiating cell (LTC-IC) population in serum-free cultures of CD34+ CD38- cord blood (CB) cells as was obtained in similar cultures of adult human CD34+ CD38- bone marrow (BM) cells (4- v 90-fold maximum increases), even though both total and colony-forming cell (CFC) numbers initially increased more rapidly in CB cultures. Multifactorial analysis of the short-term (10 d) effects of different cytokines identified FL and IL-6 in combination with the soluble IL-6 receptor (sIL-6R) as most important for expanding the CB LTC-IC population. In contrast, their counterparts in adult BM were most effectively stimulated by FL, SF and IL-3. For rapid generation of increased numbers of CFC, SF with either FL or IL-6/sIL-6R were found to be the most important contributors in cultures of CD34+ CD38- CB cells, whereas, in analogous BM cultures, IL-6/sIL-6R and TPO (in addition to FL, SF and IL-3) were required. These findings reinforce the principle of altered cytokine responsiveness as a hallmark of early haemopoietic cell differentiation and demonstrate how cytokine requirements may change during human ontogeny. Identification of conditions for optimizing the expansion of different subsets of primitive CB cells has additional important implications for clinical transplantation and gene transfer.  相似文献   

3.
A consecutive series of 70 exudates from 45 patients with clinically suspected malignancy was examined by cytology, cytophotometric measurement of DNA, short-term cell culture, scanning and transmission electron microscopy. In seven patients (21 fluids), the presence of malignant disease was verified. Malignant and benign cases were correctly diagnosed by combination of cytology and DNA analyses. An abnormal DNA profile defined by greater than 10 per cent cells with greater than 2c DNA or single cells with greater than 8c DNA was only seen in malignant exudates. Short-term cell culture with scanning electron microscopy could distinguish between lymphoid cells, histiocytes, fibroblasts, mesothelial cells and cancer cells. Only cancer cells had prominent microvilli on their surface. A future larger series will explore whether a combination of cytology and cytophotometric DNA estimation alone will improve the diagnostic accuracy to the same substantial degree as this pilot study would suggest.  相似文献   

4.
PURPOSE: This was the first randomized study to investigate the efficacy of peripheral-blood progenitor cell (PBPC) mobilization using stem-cell factor (SCF) in combination with filgrastim (G-CSF) following chemotherapy compared with filgrastim alone following chemotherapy. PATIENTS AND METHODS: Forty-eight patients with ovarian cancer were treated with cyclophosphamide and randomized to receive filgrastim 5 microg/kg alone or filgrastim 5 microg/kg plus SCF. The dose of SCF was cohort-dependent (5, 10, 15, and 20 microg/kg), with 12 patients in each cohort, nine of whom received SCF plus filgrastim and the remaining three patients who received filgrastim alone. On recovery from the WBC nadir, patients underwent a single apheresis. RESULTS: SCF in combination with filgrastim following chemotherapy enhanced the mobilization of progenitor cells compared with that produced by filgrastim alone following chemotherapy. This enhancement was dose-dependent for colony-forming unit-granulocyte-macrophage (CFU-GM), burst-forming unit-erythrocyte (BFU-E), and CD34+ cells in both the peripheral blood and apheresis product. In the apheresis product, threefold to fivefold increases in median CD34+ and progenitor cell yields were obtained in patients treated with SCF 20 microg/kg plus filgrastim compared with yields obtained in patients treated with filgrastim alone. Peripheral blood values of CFU-GM, BFU-E, and CD34+ cells per milliliter remained above defined threshold levels longer with higher doses of SCF. The higher doses of SCF offer a greater window of opportunity in which to perform the apheresis to achieve high yields. CONCLUSION: SCF (15 or 20 microg/kg) in combination with filgrastim following chemotherapy is an effective way of increasing progenitor cell yields compared with filgrastim alone following chemotherapy.  相似文献   

5.
The E6 and E7 genes of the high-risk human papillomavirus (HPV) types encode oncoproteins, and both act by interfering with the activity of cellular tumor suppressor proteins. E7 proteins act by associating with members of the retinoblastoma family, while E6 increases the turnover of p53. p53 has been implicated as a regulator of both the G1/S cell cycle checkpoint and the mitotic spindle checkpoint. When fibroblasts from p53 knockout mice are treated with the spindle inhibitor nocodazole, a rereplication of DNA occurs without transit through mitosis. We investigated whether E6 or E7 could induce a similar loss of mitotic checkpoint activity in human keratinocytes. Recombinant retroviruses expressing high-risk E6 alone, E7 alone, and E6 in combination with E7 were used to infect normal human foreskin keratinocytes (HFKs). Established cell lines were treated with nocodazole, stained with propidium iodide, and analyzed for DNA content by flow cytometry. Cells infected with high-risk E6 were found to continue to replicate DNA and accumulated an octaploid (8N) population. Surprisingly, expression of E7 alone was also able to bypass this checkpoint. Cells expressing E7 alone exhibited increased levels of p53, while those expressing E6 had significantly reduced levels. The p53 present in the E7 cells was active, as increased levels of p21 were observed. This suggested that E7 bypassed the mitotic checkpoint by a p53-independent mechanism. The levels of MDM2, a cellular oncoprotein also implicated in control of the mitotic checkpoint, were significantly elevated in the E7 cells compared to the normal HFKs. In E6-expressing cells, the levels of MDM2 were undetectable. It is possible that abrogation of Rb function by E7 or increased expression of MDM2 contributes to the loss of mitotic spindle checkpoint control in the E7 cells. These findings suggest mechanisms by which both HPV oncoproteins contribute to genomic instability at the mitotic checkpoint.  相似文献   

6.
OBJECTIVE: To examine the effect of recombinant human transforming growth factor-beta 1 (rhTGF-beta 1) alone or recombinant human interleukin 6 (rhIL-6) alone or in combination on proliferation inhibition of the human leukaemia cell line. METHODS: In the present study, using the human monoblastic cell line (U937) and human promyelocytic cell line (HL60) as an in vitro model, we analyzed the effect of two cytokins on proliferation inhibition with rate of 3H-TdR incorporation, the cellular content of DNA, DNA indices, the cell cycle and the expression of c-myc mRNA. RESULTS: With administration of rhTGF-beta 1 and rhIL-6, U937 cell growth was inhibited and the rate of 3H-TdR incorporation inhibition was increased. There was a decrease in the cellular content of DNA and DNA indices. And no change in the cell cycle was observed after administration of rhTGF-beta 1 or rhIL-6. However, there was an increase in G0/G1 phase cells and a decrease in G2M + S phase cells after administration of combination of rhTGF-beta 1 and rhIL-6. It was also found that rhIL-6 could inhibit proliferative responses of HL60 cells, meanwhile the inhibition could be enhanced by rhTGF-beta 1. The rate of 3H-TdR incorporation inhibition rose up to 39.89%, and DNA index fell to 1.00 following induction by rhIL-6 plus rhTGF-beta 1. Furthermore, G0/G1 phase cells increased while G2M + S cells decreased. CONCLUSIONS: These results suggest that combination of rhTGF-beta 1 and rhIL-6 acted in synergy to inhibit proliferation of both U937 and HL60 cell lines. Molecular hybridization test show that rhTGF-beta 1 alone, rhIL-6 alone or rhTGF-beta 1 and rhIL-6 in combination can inhibit U937 and HL60 cells expression of c-myc mRNA in a time and dose dependent manner. rhTGF-beta 1 and rhIL-6 in combination synergistically inhibited c-myc expression, which may be one of the machanisms for the actions of the two cytokines.  相似文献   

7.
Many human tumours have length alterations in repetitive sequence elements. Although this microsatellite instability has been attributed to mutations in four DNA mismatch repair genes in hereditary nonpolyposis colorectal cancer (HNPCC) kindreds, many sporadic tumours exhibit instability but no detectable mutations in these genes. It is therefore of interest to identify other genes that contribute to this instability. In yeast, mutations in several genes, including RTH and MSH3, cause microsatellite instability. Thus, we screened 16 endometrial carcinomas with microsatellite instability for alterations in FEN1 (the human homolog of RTH) and in MSH3 (refs 12-14). Although we found no FEN1 mutations, a frameshift mutation in MSH3 was observed in an endometrial carcinoma and in an endometrial carcinoma cell line. Extracts of the cell line were deficient in repair of DNA substrates containing mismatches or extra nucleotides. Introducing chromosome 5, encoding the MSH3 gene, into the mutant cell line increased the stability of some but not all microsatellites. Extracts of these cells repaired certain substrates containing extra nucleotides, but were deficient in repair of those containing mismatches or other extra nucleotides. A subsequent search revealed a second gene mutation in HHUA cells, a missense mutation in the MSH6 gene. Together the data suggest that the MSH3 gene encodes a product that functions in repair of some but not all pre-mutational intermediates, its mutation in tumours can result in genomic instability and, as in yeast, MSH3 and MSH6 are partially redundant for mismatch repair.  相似文献   

8.
Epidermal melanocytes were observed in the black but not in the white skin of black-and-white spotted guinea pigs. In experiments designed to determine whether melanocyte-stimulating hormone (MSH) affects the incorporation of thymidine by kerationcyte nuclei of the epidermal melanin unit, the labeling index was the same in all skin before MSH administration. After MSH injections, the level of (3H)thymidine incorporation in keratinocytes increased significantly in black skin but not in white. We suggest that through the mediation of melanocytes MSH indirectly afffects keratinocytes in the epidermal melanin unit.  相似文献   

9.
PURPOSE: Hematopoietic growth factor(s) (GF) may exert positive effects in vitro or in vivo on the survival of hematopoietic stem and progenitor cells after accidental or therapeutic total body irradiation. METHODS AND MATERIALS: We studied the clonogenic survival and DNA repair of irradiated (0.36, 0.73, and 1.46 Gy) CD34+ cord blood (CB) cells after short-term incubation (24 h) with GFs. CD34+ cells were stimulated with basic fibroblast growth factor (bFGF), stem cell factor/c-kit ligand (SCF), interleukin-3 (IL-3), IL-6, leukemia inhibitory factor (LIF), and granulocyte-monocyte colony stimulating factor (GM-CSF) alone or in combination in short-term serum-free liquid suspension cultures (LSC) immediately after irradiation and then assayed for clonogenic progenitors. DNA repair was evaluated by analysis of DNA strand breaks using the comet assay. Survival of CFU-GM, BFU-E, and CFU-Mix was determined and dose-response curves were fitted to the data. RESULTS: The radiobiological parameters (D[0] and n) showed significant GF(s) effects. Combination of IL-3 with IL-6, SCF or GM-CSF resulted in best survival for CFU-GM BFU-E and CFU-Mix, respectively. Combinations of three or more GFs did not increase the survival of clonogenic CD34+ cells compared to optimal two-factor combinations. The D[0] values for CFU-GM, BFU-E, and CFU-Mix ranged between 0.56-1.15, 0.41-2.24, and 0.56-1.29 Gy, respectively. As for controls, the curves remained strictly exponential, i.e., all survival curves were strictly exponential without any shoulder (extrapolation numbers n=1 for all tested GF(s). DNA repair capacity of CD34+ cells determined by comet assay, was measured before, immediately after irradiation, as well as 30 and 120 min after irradiation at 1 Gy. Notably, after irradiation the 2-h repair of cytokine-stimulated and unstimulated CD34+ cells was similar. CONCLUSION: Our data indicate that increased survival of irradiated CB CD34+ cells after short-term GF treatment is mediated through proliferative GF effects on the surviving fraction but not through improved DNA repair capacity.  相似文献   

10.
11.
The question of whether melanins are photoprotecting and/or photosensitizing in human skin cells continues to be debated. To evaluate the role of melanin upon UVA irradiation, DNA single-strand breaks (ssb) were measured in human melanocytes differing only in the amount of pigment produced by culturing at two different concentrations, basic (0.01 mM) or high (0.2 mM), of L-tyrosine, the main precursor of melanin. In parallel, pheo- and total melanin contents of the cells were determined. Identical experiments were performed with two melanocyte cultures derived from a skin type I and a skin type VI individual. For the first time the correlation between UVA-induced genotoxicity and pheo-/total melanin content has been investigated. We observed that cultured in basic medium, the skin type VI melanocytes contained 10 times more total melanin and about seven times more pheomelanin than the skin type I melanocytes. Elevation of tyrosine level in the culture medium resulted in an increase of both pheo- and total melanin levels in both melanocyte cultures; however, the melanin composition of skin type I melanocytes became more pheomelanogenic, whereas that of skin type VI melanocytes remained the same. The skin type VI melanocytes cultured in basic medium demonstrated a very high sensitivity (1.18 ssb per 10(10) Da per kJ per m2) toward UVA that is probably related to their high pheo- and total melanin content. Their UVA sensitivity, however, did not change after increasing their melanin content by culturing at high tyrosine concentration. In contrast, the skin type I melanocytes demonstrated a low sensitivity (0.04 ssb per 10(10) Da per kJ per m2) toward UVA when cultured in basic medium, but increasing their melanin content resulted in a 3-fold increase in their UVA sensitivity (0.13 ssb per 10(10) Da per kJ per m2). These results demonstrate that UVA-irradiated cultured human melanocytes are photosensitized by their own synthesized chromophores, most likely pheomelanin and/or melanin intermediates.  相似文献   

12.
Colonies of small hepatocytes appeared after the culture of primary adult rat hepatocytes for 4 days in serum-free Dulbecco's modified Eagle's medium containing 10 mM nicotinamide and 10 ng/ml of epidermal growth factor (EGF), acidic and basic fibroblast growth factors (FGF), hepatocyte growth factor (HGF), or transforming growth factor-alpha (TGF-alpha). Every colony consisted of cells that each had a single nucleus and a higher nucleus/cytoplasm ratio than surrounding hepatocytes, and immunocytochemically the cells induced by any mitogen were stained with albumin, transferrin, cytokeratin-8 and -18. But these cells expressed neither cytokeratin-7 nor -19. When 6 x 10(5) cells were plated on 35-mm dishes, about 15 colonies per 1,000 attached cells were observed in the cultures treated with EGF, HGF, and TGF-alpha. Although FGFs could also induce colonies, their number was less than half of the number induced by EGF. Furthermore, the numbers of colonies induced by the combinations of EGF+HGF, EGF+TGF-alpha, and HGF+TGF-alpha were not different from those of the colonies induced by each mitogen alone. To examine the ability of co-mitogenic factors to induce small-cell colonies, angiotensin-II, insulin-like growth factor-I, norepinephrine, tumor necrosis factor, and vasopressin were used. In the cells cultured without EGF, these co-mitogens neither stimulated DNA synthesis nor induced colonies. On the other hand, in cells cultured with both EGF and each co-mitogen, although the DNA synthesis of the hepatocytes was enhanced, the number of colonies detected was not significantly different from the number which EGF alone could induce. These results showed that the small-cell colonies in primary cultures of rat hepatocytes were inducible by EGF, HGF, TGF-alpha, or FGFs and that the co-mitogens did not influence the formation of the small-cell colonies.  相似文献   

13.
Laser scanning cytometry (LSC), a newly developed technology, allowed simple detection of dead cells with morphological features of apoptosis for cells stained with only propidium iodide (PI). HeLa cells were treated with Adriamycin (ADM, 0.5 or 1.0 microgram/ml). A PI fluorescence value (representing DNA content) versus PI fluorescence peak (representing chromatin condensation) cytogram of LSC made it possible to segregate cells with high PI fluorescence peak from others in a cell population and concomitantly to analyze the relationship between the cells and the cell cycle. A fraction of the cells manifesting hypercondensation of chromatin was exclusively present in a cell population treated with ADM. Visual inspection of the cells defined in the cytogram revealed morphological features of apoptosis. LSC analysis facilitates monitoring effects of anticancer drugs on a cell population, because nuclear DNA staining with PI is simple and rapid.  相似文献   

14.
In an attempt to examine the cellular changes associated with cisplatin resistance, we selected a cisplatin-resistant (A43 1/Pt) human cervix squamous cell carcinoma cell line following continuous in vitro drug exposure. The resistant subline was characterized by a 2.5-fold degree of resistance. In particular, we investigated the expression of cellular defence systems and other cellular factors probably involved in dealing with cisplatin-induced DNA damage. Resistant cells exhibited decreased platinum accumulation and reduced levels of DNA-bound platinum and interstrand cross-link frequency after short-term drug exposure. Analysis of the effect of cisplatin on cell cycle progression revealed a cisplatin-induced G2M arrest in sensitive and resistant cells. Interestingly, a slowdown in S-phase transit was found in A431/Pt cells. A comparison of the ability of sensitive and resistant cells to repair drug-induced DNA damage suggested that resistant cells were able to tolerate higher levels of cisplatin-induced DNA damage than their parental counterparts. Analysis of the expression of proteins involved in DNA mismatch repair showed a decreased level of MSH2 in resistant cells. Since MSH2 seems to be involved in recognition of drug-induced DNA damage, this change may account for the increased tolerance to DNA damage observed in the resistant subline. In conclusion, the involvement of accumulation defects and the increased tolerance to cisplatin-induced DNA damage in these cisplatin-resistant cells support the notion that multiple changes contribute to confer a low level of cisplatin resistance.  相似文献   

15.
Melanin biosynthesis patterns following hormonal stimulation   总被引:1,自引:0,他引:1  
The effect of melanocyte-stimulating hormone (MSH) on the differentiation of mammalian melanocytes has been widely studied since the early 1950s. There have been many reports about the stimulatory effect of MSH on melanin production and specifically on the activity of tyrosinase, the critical enzyme in the melanogenic pathway. However, few and variable results have been obtained concerning the effect of this hormone on the regulation of DOPAchrome tautomerase (TRP2), another melanogenic enzyme which functions later in the melanogenic pathway, or on other melanogenic activities, such as TRP1. In this study, we show that the MSH-induced stimulation of tyrosinase is accompanied by no significant change in the synthesis or catalytic activities of other melanogenic enzymes such as TRP1 or TRP2. This in turn elicits a dramatic increase in melanin production accompanied by a significant decrease in the incorporation of carboxylated precursors into that melanin biopolymer, although the biological implication of that is still unclear.  相似文献   

16.
The effect of fleroxacin on gentamicin-induced nephrotoxicity was evaluated with female Sprague-Dawley rats. Animals were injected during 4 or 10 days with saline (NaCl; 0.9%), gentamicin alone at doses of 10 and 40 mg/kg of body weight/12 h (subcutaneously), fleroxacin alone at a dose of 25 mg/kg/12 h (intraperitoneally), or the combination gentamicin-fleroxacin in the same regimen. Gentamicin induced a dose- and time-dependent renal toxicity as evaluated by gentamicin cortical levels, sphingomyelinase activity in the renal cortex, histopathologic and morphometric analysis, blood urea nitrogen and serum creatinine levels, and cellular regeneration ([3H]thymidine incorporation into DNA of cortical cells). The extent of these changes was significantly reduced when gentamicin was given in combination with fleroxacin. Although the mechanisms by which fleroxacin reduces the nephrotoxic potential of gentamicin are unknown, we propose that the fleroxacin-gentamicin combination enhances exocytosis activity in proximal tubular cells, as suggested by the higher excretion of urinary enzymes and lower cortical levels of gentamicin observed in animals treated with the combination fleroxacin-gentamicin compared with those treated with gentamicin alone. The protective effect of fleroxacin on gentamicin nephrotoxicity should be investigated further.  相似文献   

17.
All-trans retinoic acid (ATRA) induces differentiation of acute promyelocytic leukemia (APL), but the effect of cytokines regulating myeloid differentiation on ATRA-induced APL cells is poorly understood. In this study, maturation and proliferation of fresh APL cells were examined when induced in vitro by granulocyte or granulocyte/macrophage colony-stimulating factors (G-CSF or GM-CSF) in combination with ATRA. APL cells showed a low proliferating activity when induced by ATRA alone. In contrast, cells induced by G-CSF or GM-CSF alone showed increased DNA syntheses, the levels of which were not significantly affected by the combination of ATRA with CSFs. Interestingly, G-CSF or GM-CSF potentiated the capability of ATRA-induced cells to reduce nitroblue tetrazolium (NBT), while G-CSF or GM-CSF alone induced no NBT reduction. Furthermore, in several patients examined, APL cells induced by ATRA with G-CSF showed an increased activity of chemotaxis and CD11a expression. These findings suggest that G-CSF or GM-CSF can potentiate differentiation of ATRA-induced APL cells while stimulating their proliferating activity as well, and that G-CSF, rather than GM-CSF, may be a useful adjunct to promote ATRA-induced differentiation of APL.  相似文献   

18.
The G2 chromosomal radiosensitivity of murine SCID (severe combined immunodeficient) and normal fibroblasts has been investigated. We have also investigated the G2 response of these cell lines to the restriction endonuclease PvuII. We show that chromatid breaks are induced linearly with radiation dose in both cell lines and SCID cells are approximately 1.6 times as radiosensitive as normal murine fibroblasts when tested using a G2 assay with a 2 h sampling time. The disappearance of chromatid breaks with time after irradiation was first order with a half-time of approximately 1.5 h in both cell lines. Thus, although SCID cells are deficient in the rejoining of double-strand breaks (dsb), they show similar kinetics of disappearance of chromatid breaks with time as normal CB17 cells, indicating that the 'rejoining' of chromatid breaks does not reflect dsb repair. When CB17 and SCID cells were treated with PvuII, which generates dsb in cellular DNA in the presence of streptolysin O (as a porating agent), approximately 3 times more chromatid breaks were observed in SCID than CB17 cells. We conclude that SCID cells convert a higher number of dsb into chromatid breaks than do CB17 cells. The conversion process is interpreted in terms of the recently proposed 'signal' model, whereby a signal, resulting from a single dsb, triggers the cell to make a recombinational exchange which, if incomplete, gives rise to a visible chromatid break. In terms of the signal model, elevated conversion of dsb into chromatid breaks results from altered signalling and the disappearance of chromatid breaks with time following irradiation represents the completion of recombinational exchanges rather than repair of dsb.  相似文献   

19.
Flavopiridol (L86-8275) is a synthetic flavone currently undergoing Phase I clinical trials. It is active against a series of human cancer cell lines and has been shown to inhibit a broad range of protein kinases, including cyclin-dependent kinases and protein kinase C (PKC). Previous studies have shown that the PKC-specific inhibitor safingol significantly enhances the induction of apoptosis by mitomycin-C (MMC) in gastric cancer cells. Because flavopiridol can potentially inhibit PKC, we elected to determine the extent to which flavopiridol would promote MMC-induced apoptosis in both gastric and breast cancer cells. For these studies, MKN-74 gastric cancer cells and MDA-MB-468 breast cancer cells were exposed to either no drug, 1 microgram/ml MMC alone, 300 nM flavopiridol alone, or a combination of chemotherapy with flavopiridol for 24 h. Sequence specificity was also examined by first exposing cells to MMC for 24 h followed by flavopiridol for 24 h or to the same drugs in the reverse order. Apoptosis was measured by quantitative fluorescence microscopy of nuclear chromatin condensation in cells stained with the dye, bisbenzimide trihydrochloride. Exposure of MKN-74 cells to flavopiridol alone induced apoptosis in 12 +/- 1% of the cells, and exposure to MMC alone induced apoptosis in 10 +/- 1%. However, the combination of flavopiridol and MMC increased the induction of apoptosis to 55 +/- 3% of the cells (P < 0.005 for the drug combination versus flavopiridol alone). Pretreatment with the PKC activator 3-phorbol 12-myristate 13-acetate only partially reversed this effect (43 +/- 1%; P < 0.025). In MDA-MB-468 cells, flavopiridol alone induced apoptosis in 17 +/- 1% of the cells, and MMC alone induced apoptosis in 10 +/- 1% of the cells. The combination of flavopiridol and MMC increased the percentage of MDA-MB-468 cells undergoing apoptosis to 58 +/- 4% (P < 0.005 for the drug combination versus flavopiridol alone). Sequential treatment with MMC followed by flavopiridol induced apoptosis in 63 +/- 2% of the MKN-74 cells (P < 0.05 versus the concomitant drug combination) and in 76 +/- 2% of the MDA-MB-468 cells (P < 0.025 versus the concomitant drug combination), whereas flavopiridol followed by MMC did not increase the induction of apoptosis in either cell line. As determined by the terminal deoxynucleotidyl transferase labeling of the 3' ends of DNA fragments produced in apoptotic cells, the induction of apoptosis with the combination of flavopiridol and MMC occurred to MKN-74 cells in all phases of the cell cycle (i.e., G0-G1, S, and G2-M). These results indicate that flavopiridol potentiates the cytotoxic effect of the chemotherapeutic agent MMC by promoting drug-induced apoptosis in tumor cells. Sequencing studies suggest that MMC followed by flavopiridol or simultaneous treatment is superior to flavopiridol followed by MMC. The enhancement of MMC-induced apoptosis by flavopiridol may be partially PKC dependent and is not associated with one specific region of the cell cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号