首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
《Wear》2007,262(5-6):699-706
The multiple parts of this study are intended to experimentally and analytically elaborate the tribological properties of epoxy nanocomposites, reinforced by short carbon fibres (SCF), nano-TiO2 particles, polytetrafluorethylen (PTFE) powders and graphite flakes, in order to understand the role of fillers in modifying the wear behaviour of the materials. In this part, the influences of two solid lubricants, PTFE and graphite, were studied and compared. The transfer films established with two lubricants in sliding wear of epoxy nanocomposites against metallic counterparts were characterised under different sliding conditions. The morphology of transfer films was examined using scanning electronic microscopy (SEM), while their mechanical properties were investigated using micro-hardness tests. A method was proposed to determine the thickness of transfer films based on micro-indentation. The role of transfer films in dissipation of frictional heating was also studied. Epoxy nanocomposites containing both PTFE powders and graphite flakes showed a synergised effect in wear performance, especially under very severe wear conditions.  相似文献   

2.
The tribological properties of two kinds of high temperature resistant thermoplastic composites, polyetheretherketone (PEEK) and polyetherimide (PEI), reinforced with short carbon fibre (SCF), graphite flakes, and sub-micro particles of TiO2 and ZnS, were investigated in dry sliding conditions. Friction and wear experiments were conducted on a pin-on-disc apparatus, using composite pins against polished steel counterparts, performed within moderate pv-ranges at room and elevated temperatures (up to 150 °C). It was found that conventional fillers, i.e. SCF and graphite flakes, could effectively enhance both the wear resistance and the load-carrying capacity of the base polymers. With the addition of sub-micro particles, the frictional coefficient and wear rate of the composites were further reduced especially at elevated temperatures. On the basis of microscopic observation of worn surfaces, dominant wear mechanisms are discussed.  相似文献   

3.
In order to overcome the disadvantages generated by the loosened nanoparticle agglomerates dispersed in polymer composite coatings, nano-TiO2 particles are modified using trifluoracetic acid. The friction and wear properties of the phenolic coatings filled with different surface treated nano-TiO2, sliding against AISI-C-52100 steel ring under dry sliding, were investigated on a MHK-500 wear tester. Owing to the effective improvement of their dispersibility in the phenolic coating, compared with the cases of untreated nano-TiO2, the employment of modified nano-TiO2 provided the phenolic coating with much better tribological performance. Worn surfaces of the untreated nano-TiO2 or modified nano-TiO2 filled phenolic coating and transfer films formed on the surface of the counterpart ring sliding against the composite coating were respectively investigated by SEM and optical microscope (OM), from which it is assumed that the optimal content of TiO2 or TF-TiO2 is able to enhance the adhesion of the transfer films to the surface of counterpart ring. As a result, the wear resistance of the phenolic composite coating filled with modified nano-TiO2 was significantly enhanced, especially at extreme wear conditions, i.e. high contact pressures.  相似文献   

4.
《Wear》2006,260(7-8):869-878
In our pervious studies [Z. Zhang, C. Breidt, L. Chang, F. Haupert, K. Friedrich, Enhancement of the wear resistance of epoxy: short carbon fibre, graphite, PTFE and nano-TiO2, Composites A 35 (2004) 1385–1392; L. Chang, Z. Zhang, C. Breidt, K. Friedrich, Tribological properties of epoxy nanocomposites. I. Enhancement of the wear resistance by nano-TiO2 particles, Wear 258 (1–4) (2005) 141–148], wear performances of a series of epoxy-based nanocomposites were systemically investigated by a pin-on-disk apparatus under different sliding conditions. The addition of spherical TiO2 nanoparticles (300 nm in diameter) was found to be able to apparently reduce the frictional coefficient, and consequently to decrease the contact temperature and wear rate of fibre reinforced epoxy composites. To promote this conclusion, the present paper intends to further understand the wear mechanisms involved in micro- and nanoscales. Based on a scanning electron (SEM) and an atomic force (AFM) microscopy observations of the worn surfaces, a positive rolling effect of the nanoparticles between the material pairs was proposed, which led to the remarkable reduction of the frictional coefficient. In particular, this rolling effect protects the short carbon fibres from more severe wear mechanisms, especially at high sliding pressure and speed situations. In order to validate the assumption proposed, the influence of the counterpart roughness on the wear performance were carried out as well.  相似文献   

5.
The objective of this investigation is to assess the influence of graphite reinforcement on tribological behavior of ZA-27 alloy. The composite with 2 wt% of graphite particles was produced by the compocasting procedure. Tribological properties of unreinforced alloy and composite were studied, using block-on-disk tribometer, under dry and lubricated sliding conditions at different specific loads and sliding speeds. The worn surfaces of the samples were examined by the scanning electron microscopy (SEM). The obtained results revealed that ZA-27/graphite composite specimens exhibited significantly lower wear rate and coefficient of friction than the matrix alloy specimens in all the combinations of applied loads (F n ) and sliding speeds (v) in dry and lubricated tests. The positive tribological effects of graphite reinforcement of ZA-27 in dry sliding tests were provided by the tribo-induced graphite film on the contact surface of composite. In test conditions, characterized by the small graphite content and modest sliding speeds and applied loads, nonuniform tribo-induced graphite films were formed leading to the increase of the friction coefficient and wear rate, with increase of the sliding speed and applied load. In conditions of lubricated sliding, the very fine graphite particles formed in the contact interface mix with the lubricating oil forming the emulsion with improved tribological characteristics. Smeared graphite decreased the negative influence of F n on tribological response of composites, what is manifested by the mild regime of the boundary lubrication, as well as by realization of the mixed lubrication at lower values of the v/F n ratio, with respect to the matrix alloy.  相似文献   

6.
Abstract

The influence of diamond-like carbon (DLC) coating positions—coated flat, coated cylinder, and self-mated coated surface tribopairs—on the fretting behaviors of Ti-6Al-4V were investigated using a fretting wear test rig with a cylinder-on-flat contact. The results indicated that, for tests without coating (Ti-6Al-4V–Ti-6Al-4V contact), the friction (Qmax/P) was high (0.8–1.2), wear volumes were large (0.08–0.1?mm3) under a large displacement amplitude of ±40 µm and small (close to 0) under a small displacement amplitude of ±20 µm, and the wear debris was composed of Ti-6Al-4V flakes and oxidized particles. For tests with the DLC coating, under low load conditions, the DLC coating was not removed or was only partially removed, Qmax/P was low (≤0.2), and the wear volumes were small. Under high load conditions, the coating was entirely removed, Qmax/P was high (0.6–0.8), and the wear volumes were similar to those in tests without coating. The wear debris was composed of DLC particles, Ti-6Al-4V flakes, and oxidized particles. The DLC coating was damaged more severely when deposited on a flat surface than when deposited on a cylindrical surface. The DLC coating was damaged more severely when sliding against a DLC-coated countersurface than when sliding against the Ti-6Al-4V alloy.  相似文献   

7.
As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments are eagerly required. Herein a copper-based composite with WS2 and graphite as solid lubricant are fabricated by powder metallurgy hot-pressed method. The friction and wear behaviors of the composites with and without current are investigated under the condition with sliding velocity of 10 m/s and normal load of 2.5N/cm 2 in both air and vacuum. Morphologies of the worn surfaces are observed by optical microscope and compositions of the lubricating films are analyzed by XPS. Surface profile curves and roughness of the worn surfaces are obtained by 2205 surface profiler. The results of wear tests show that the friction coefficient and wear volume loss of the composites with current are greater than that without current in both air and vacuum due to the adverse effects of electrical current which damaged the lubricating film partially and roughed the worn surfaces. XPS results demonstrate that the lubricating film formed in air is composed of oxides of Cu, WS2 , elemental S and graphite, while the lubricating film formed in vacuum is composed of Cu, WS2 and graphite. Because of the synergetic lubricating action of oxides of Cu, WS2 and graphite, the composites show low friction coefficient and wear volume loss in air condition. Owing to the fact that graphite loses its lubricity which makes WS2 become the only lubricant, severe adhesive and abrasive wear occur and result in a high value of wear rate in vacuum condition. The formation of the lubricating film on the contact interface between the brush and ring is one of the factors which can greatly affect the wear performance of the brushes. The low contact voltage drop of the composites in vacuum condition is attributed to the high content of Cu in the surface film. This study fabricated a kind of new sliding electrical contact self-lubricating composite with dual-lubricant which can work well in both air and vacuum environments and provides a comprehensive analysis on the lubrication mechanisms of the composite.  相似文献   

8.
Bronze–graphite composite was prepared using powder metallurgy. The friction and wear behaviors of the resulting composites in dry- and water-lubricated sliding against a stainless steel were comparatively investigated on an MM-200 friction and wear tester in a ring-on-block contact configuration. The wear mechanisms of the bronze–graphite composite were discussed based on examination of the worn surface morphologies of both the composite block and the stainless steel ring by means of scanning electron microscopy equipped with an energy dispersion spectrometry and on determination of some typical elements on the worn surfaces by means of X-ray photoelectron spectroscopy. It was found that the friction coefficient was higher under water lubrication than that under dry sliding and it showed margined change with increasing load under the both sliding conditions. A considerably decreased wear rate of the bronze–graphite composite was registered under water-lubricated sliding than under dry sliding, though it rose significantly at a relatively higher load. This was attributed to the hindered transfer of the composite onto the counterpart steel surface under water-lubricated sliding and the cooling effect of the water as a lubricant, while its stronger transfer onto the steel surface accounted for its higher wear rate under dry sliding. Thus, the bronze–graphite composite with much better wear-resistance under water-lubricated sliding than under dry sliding against the stainless steel could be a potential candidate as the tribo-material in aqueous environment.  相似文献   

9.
Abstract

The present study addresses the dry wear behaviour of aluminium matrix composites under different sliding speeds and applied loads. Values of the friction coefficient of the matrix alloy and composite materials were in expected range for light metals in dry sliding conditions. The higher coefficient of friction was the consequence of established contact between hard SiC particles and the counter body material. The rough and smooth regions are distinguished on the worn surface of the composites similar to the unreinforced Al alloy. Plastic deformation occurred when the applied specific load was higher than the critical value. The high shear stresses on the sliding surface cause initiation and propagation of the cracks in the subsurface, leading to the loss of material from the worn surface in the form of flakes. The debrises of the composites at low wear rate comprise a mixture of the fine particles and small shiny metallic plate-like flakes and are associated with the formation of more iron rich layers on the contact surfaces.  相似文献   

10.
《Wear》2004,256(1-2):9-15
This paper deals with the effect of counterpart material (hardened steel, austenitic steel, and Al2O3), internal lubricant (PTFE, graphite, MoS2, and SnS2), and fibre reinforcement (glass and carbon fibres) on the wear of epoxy-based composites. Under dry conditions the high chromium austenitic steel led to a lower composite wear than the bearing steel. Alumina counterparts produced results similar to the austenitic steel. In a dry environment, only PTFE led to a remarkable wear reduction, while all other fillers had no significant effect regardless of the counterpart material. For wet conditions the Al2O3 ceramic seems to be most promising. The carbon fibre reinforced version had the best wear performance under aqueous conditions.  相似文献   

11.
The purpose of this investigation is to understand the role of KMnO4 as an oxidant additive on the lubrication properties of a soft metal + graphite composite system, under flat contact sliding conditions where the sliding surfaces interact less with the atmosphere. The sliding tests were made using a ring-on-disk machine, lubricated with Pb or Ag + graphite composite containing different amounts of KMnO4 additive. The results showed that the addition of KMnO4 in the composites reduced the friction in air up to temperatures of 500°C. The coefficient of friction was as low as 0.1. This is probably due to the fact that KMnO4 decomposed during sliding to generate oxygen, which is effective in improving the lubricating ability of graphite. The optimum concentration of KMnO4 in the solid lubricants (graphite + KMnO4) was 5–10 vol.%. After decomposition of all oxidant additive in the composite, the coefficient of friction of the composites, however, rose to 0.2–0.3.  相似文献   

12.
The hydrogenated amorphous carbon (a-C:H) films were prepared on AISI 440C steel substrates using a RF magnetron sputtering graphite target in the CH4 and Ar mixture atmosphere. The friction and wear behavior of a-C:H films were comparatively investigated by pin-on-disc tester under dry sliding and simulated sand-dust wear conditions. In addition, the effects of applied load, amount of sand and sand particle sizes on the tribological performance of a-C:H films were systemically studied. Results show that a-C:H films exhibited ultra-high tribological performance with low friction coefficient and ultra-low wear rate under sand-dust environments. It is very interesting to observe that the friction coefficient of a-C:H film under sand-dust conditions was relatively lower when compared with dry sliding condition, and the wear rate under sand-dust conditions kept at the same order of magnitude (×10−19 m3/N m) with the increase of applied load and particle size as a comparison with the dry sliding condition. Based on the formation of “ridge” layer (composite transfer layer), a transfer layer-hardening composite model was established to explain the anti-wear mechanisms and friction-reducing capacity of a-C:H solid lubrication films under sand-dust conditions.  相似文献   

13.
The tribological properties of Ni3Al-Cr7C3 composite coating under water lubrication were examined by using a ball-on-disc reciprocating tribotester. The effects of load and sliding speed on wear rate of the coating were investigated. The worn surface of the coating was analyzed using electron probe microscopy analysis (EPMA) and X-ray photoelectron spectroscopy (XPS). The results show the friction coefficient of the coating is decreased under water lubrication. The wear rate of the coating linearly increases with the load. At high sliding speed, the wear rate of the coating is dramatically increased and a large amount of the counterpart material is transferred to the coating worn surface. The low friction of the coating under water lubrication is due to the oxidizing of the worn surface in the wear. The wear mechanism of the coating is plastic deformation at low normal load and sliding speed. However, the wear mechanism transforms to microfracture and microploughing at high load with low sliding speed, and oxidation wear at high sliding speed. It is concluded that the contribution of the sliding speed to an increase in the coating wear is larger than that of the normal load.  相似文献   

14.
Three ceramic composite grades, consisting of a ZrO2 matrix and 40 vol.% WC, TiC0.5N0.5 or TiN phase, were completely self-developed by hot pressing powder mixtures of yttria-stabilised zirconia (Y-TZP) and distinctive WC, TiC0.5N0.5 or TiN powder sources. The friction and wear characteristics of the zirconia-based composites against WC-Co cemented carbide were investigated by performing dry reciprocating sliding experiments on a pin-on-plate tribometer under various normal contact forces. The generated wear was quantified using surface scanning topography. Post-mortem obtained wear volumes were correlated to real-time recorded wear depth. The ZrO2-40 vol.% WC grade displayed more favorable tribological properties compared to the other grades with equal secondary phase content. The worn surfaces and the wear debris were analysed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), revealing several wear mechanisms such as polishing, abrasion and wear debris layer formation, mainly depending on the imposed contact load and the material composition.  相似文献   

15.
This paper studies experimentally the effects of CO2 laser-treatment on the wear behaviour of plasma-sprayed Al2O3 coatings, in linear contact sliding (dry, abrasive and lubricated) against SAE 4620 steel. Tests were carried out using a block-on-ring friction and wear tester, under different loads at different speeds. The wear mechanism and the changes in adherence, porosity and microstructure by laser treatment were also investigated. Results show a better wear behaviour for both laser-treated ceramic coating and its paired steel under dry and abrasive conditions, compared with the case without laser treatment. The lubricated wear behaviour of the laser-treated ceramic coating, however, is not improved. The changes in microhardness, porosity and adherence caused by the laser treatment are responsible for the change in wear behaviour of the ceramic coating.  相似文献   

16.
The friction and wear properties of Ti6Al4V sliding against AISI52100 steel ball under different lubricative media of surface-capped copper nanoclusters lubricant—Cu nanoparticles capped with O,O′-di-n-octyldithiophosphate (Cu-DTP), rapeseed oil and rapeseed oil containing 1 wt% Cu-DTP was evaluated using an Optimol SRV oscillating friction and wear tester. The wear mechanism was examined using scanning electron microscopy (SEM) and X-ray photoelectron spectrosmeter (XPS). Results indicate that Cu-DTP can act as the best lubricant for Ti6Al4V as compared with rapeseed oil and rapeseed oil containing 1 wt% Cu-DTP. The applied load and sliding frequency obviously affected the friction and wear behavior of Ti6Al4V under Cu-DTP lubricating. The frictional experiment of the Ti6Al4V sliding against AISI52100 cannot continue under the lubricating condition of rapeseed oil or rapeseed oil containing 1 wt% Cu-DTP when the applied load are over 100 N. Surprisingly, the frictional experiment of Ti6Al4V sliding against AISI52100 steel can continue at the applied load of 450 N under Cu-DTP lubricating. The tribochemical reaction film containing S and P is responsible for the good wear resistance and friction reduction of Ti6Al4V under Cu-DTP at the low applied load. However, a conjunct effect of Cu nanoparticle deposited film and tribochemical reaction film containing S and P contributes to the good tribological properties of Ti6Al4V under Cu-DTP at the high-applied load.  相似文献   

17.
Boron carbide (B4C) has been studied under dry sliding conditions for use as a potential finite-life run-in coating. Such a coating has been found to polish its mating surface during dry sliding wear, thereby providing fatigue resistance to the coated part. Employing such run-in coatings requires a complete understanding of the changes that occur in the coating abrasiveness during the polishing process. Therefore, a thorough understanding of the changes in the contact conditions of such a system needs to be obtained. This study presents the role that contact plays in changes of the overall coating abrasiveness. By performing sliding wear experiments using various contact conditions, i.e. ball-on-disc, pin-on-disc and cone-on-disc, we directly investigated the effects of macro-scale contact conditions on the coating abrasiveness. It was found that the rate at which the coating abrasiveness decreased was independent of the macro-scale contact conditions. These findings were further validated by investigating the coating abrasiveness results that were obtained by performing spiral track wear experiments. Through the use of a three-dimensional thermomechanical asperity contact model, it was found that the coating abrasiveness was controlled by the actual micro-scale contact conditions. This study supports the classic Greenwood–Williamson model, which states that the number of micro-scale contacts and the total actual area of contact remains constant for a given load.  相似文献   

18.
The dynamics of MoS2 particles in a mineral oil dispersion are studied in the same manner as reported in Part I for graphite dispersions. A Hertzian contact consisting of a steel ball in contact with a glass disk is lubricated with MoS2 dispersions and observed by optical microscopy at various. slide/roll conditions. In general, the behavior of MoS2 and graphite are similar. That is, the solids lend to enter the contact and form a film on the contacting surfaces whenever a rolling component of motion is used, but solid particles seldom enter the contact during pure sliding. MoS2 has more pronounced plastic flow behavior than graphite. However, the polished steel ball is more readily scratched by MoS2 than by graphite. Under the conditions of these studies, lower friction and wear are observed with pure oil rather than with the dispersions. However, under other conditions (such as different contact geometry or rougher surfaces), the solid-lubricant dispersions might be beneficial.  相似文献   

19.
In the present study, the effect of the Al2O3 particles (average size of 12 μm, 3 and 10 wt.%) reinforcement on the microstructure and tribological properties of Al–Si alloy (A356) was investigated. Composites were produced by applying compocasting process. Tribological properties of unreinforced alloy and composites were studied, using pin-on-disc tribometer, under dry sliding conditions at different specific loads and sliding speed of 1 m/s. Microhardness measurements, optical microscope and scanning electron microscope were used for microstructural characterization and investigation of worn surfaces and wear debris. During compocasting of A356 alloy, a transformation from a typical dendritic primary α phase to a non-dendritic rosette-like structure occurred. Composites exhibited better wear resistance compared with unreinforced alloy. Presence of 3 wt.% Al2O3 particles in the composite material affected the wear resistance only at specific loads up to 1 MPa. The wear rate of composite with 10 wt.% Al2O3 particles was nearly two order of the magnitude lower than the wear rate of the matrix alloy. Dominant wear mechanism for all materials was adhesion, with others mechanisms: oxidation, abrasion and delamination as minor ones.  相似文献   

20.
This study is aimed at investigating the influence of counter surfaces׳ topography on tribological behavior of several carbon-filled polyphenylene sulfide (PPS) composites in water lubricated contacts. The results of this study showed significant increase in wear rate of pure, graphite and/or multi-walled carbon nanotubes filled PPS composites with increase in mean slope of profile along the sliding direction (Δαy). This is while SCF filled PPS composites exhibited 1–3 orders of magnitude lower wear rate with little dependence on counter surface roughness characteristics. Among the roughness parameters studied, Rpk and lay orientation played a more significant role in friction, and Rpk and Δαy were found to correlate best with the wear rate of the composites not containing SCF in their matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号