首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Benzoic (BEN) and cinnamic (CIN) acids are commonly found in soils and are considered as strong allelochemicals. Published information suggest that BEN and CIN and other phenolic acids decrease plant growth in part by suppressing nutrient absorption. However, studies on the mechanism of action were not conclusive. We examined the effects of BEN and CIN on the cell plasma membrane in intact soybean (Glycine max L. cv. Maple Bell) seedlings. Treating intact root systems with BEN or CIN rapidly increased electrolyte leakage and ultraviolet absorption of materials into the surrounding solution. After 12 hr of treatment, BEN and CIN lowered the extracellular sulfhydryl group content in roots. The two allelochemicals induced lipid peroxidation, which resulted from free radical formation in plasma membranes, inhibition of catalase and peroxidase activities, and sulfhydryl group depletion. Oxidation or cross-linking of plasma membrane sulfhydryl groups is the first mode of action of both compounds. The BEN- and CIN-induced decrease in soybean nutrient absorption may be a consequence of damage to cell membrane integrity caused by a decrease in sulfhydryl groups followed by lipid peroxidation.Contribution #505 of the Soils and Crops Research Centre  相似文献   

2.
Distribution and Exudation of Allelochemicals in Wheat Triticum aestivum   总被引:8,自引:0,他引:8  
Wheat allelopathy has potential for weed suppression. Allelochemicals were identified in wheat seedlings, and they were exuded from seedlings into agar growth medium. p-Hydroxybenzoic, trans-p-coumaric, cis-p-coumaric, syringic, vanillic, trans-ferulic, and cis-ferulic acids and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) were identified in both the shoots and roots of 17-day-old wheat seedlings and their associated agar growth medium. Wheat accessions with previously identified allelopathic activity tended to contain higher levels of allelochemicals than poorly allelopathic ones. The allelopathic compounds present in the shoots generally also were identified in the roots and in the agar medium. Allelochemicals were distributed differentially in wheat, with roots normally containing higher levels of allelochemicals than the shoots. When the eight allelochemicals were grouped into benzoic acid and cinnamic acid derivatives, DIMBOA, total coumaric, and total ferulic acids, the amount of each group of allelochemicals was correlated between the roots and the shoots. Most of the allelochemicals identified in the shoots and roots could be exuded by the living roots of wheat seedling into the agar growth medium. However, the amounts of allelochemicals in the agar growth medium were not proportional to those in the roots. Results suggest that wheat plants may retain allelochemicals once synthesized. The presence of allelochemicals in the agar growth medium demonstrated that wheat seedlings were able to synthesize and to exude phytotoxic compounds through their root system that could inhibit the root growth of annual ryegrass.  相似文献   

3.
Apple replant is a widespread agricultural problem documented in all of the major fruit-growing regions of the world. In order to better understand the phytotoxic mechanisms induced by allelochemicals involved with this problem, Malus prunifolia plants were grown hydroponically to the six-leaf-stage in the presence of phthalic acid (0 or 1 mM) for 5, 10, or 15 days. Apple plants were evaluated for: shoot and root length, fresh and dry weight, malondialdehyde (MDA) content, hydrogen peroxide (H2O2) content, superoxide radical (O2 ·−) generation rate, and antioxidant enzyme activities. Shoot and root lengths and fresh and dry weights of M. prunifolia decreased in plants exposed to phthalic acid. MDA and H2O2 content increased in phthalic acid-treated plants as did the generation rate of O2 ·− in M. prunifolia roots. The activities of superoxide dismutase (EC 1.15.1.1), peroxidase (EC 1.11.1.7), catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2), dehydroascorbate reductase (EC 1.8.5.1), and monodehydroascorbate reductase (EC 1.6.5.4) increased in phthalic acid-stressed roots compared with control roots. These results suggest that activation of the antioxidant system by phthalic acid led to the formation of reactive oxygen species that resulted in cellular damage and the decrease of M. prunifolia growth.  相似文献   

4.
Experiments were designed to test the hypothesis that interference with chlorophyll metabolism may be one mechanism of inhibition of plant growth in allelopathic interactions. Effects of ferulic,p-coumaric, and vanillic acids on soybean and grain sorghum growth and chlorophyll content were quantified and compared after seedlings were treated with these compounds in a nutrient culture. Following a 6-day treatment cycle, dry weights of soybean seedlings were reduced by both 10–3 M and 5 × 10–4 M treatments of ferulic,p-coumaric and vanillic acids. Soybean weight reductions in each case were paralleled by a significant reduction in the concentration (g Chl/mg dry wt) of chlorophylls a and b and total chlorophyll in the unifoliate leaves. Sorghum seedling growth was also reduced by each of the compounds at the 5 × 10–4 M level, but leaf chlorophyll concentration was not below that of control plants.  相似文献   

5.
Insect-Induced Synthesis of Phytoecdysteroids in Spinach, Spinacia oleracea   总被引:4,自引:0,他引:4  
Spinach (Spinacia oleracea) foliage is known to synthesize and accumulate insect molting hormones, predominantly in the form of 20-hydroxyecdysone (20E). We previously demonstrated that root 20E accumulation is increased following root damage. We designed two further experiments to address root responses to both mechanical and insect damage. In plants grown hydroponically, removal of 35% or less of the root mass did not result in changes in root 20E levels. However, removal of 70% of the root mass stimulated 6.0- and 1.5-fold increases in the root and shoot 20E concentrations, respectively. The effects of insect damage on soil-grown plants were investigated by infesting plant roots with black vine weevil (BVW: Otiorhynchus sulcatus) larvae and allowing them to feed for seven days. Decreases in root mass occurred in young plants; however, no changes were detected in mature plants. In all cases, root herbivory resulted in at least a 3.0-fold increase in root 20E concentrations. Our previous experiments implicated jasmonic acid and the analog methyl jasmonate (MJ) in signaling the damage-induced accumulation of root 20E levels. We investigated the activity of other phytohormones and growth regulators (GRs) on the 20E accumulation patterns of young plants as a means of examining the significance of jasmonates in the induction response. Hydroponic additions of MJ (0.5 M) and the synthetic auxin, 1-naphthaleneacetic acid (NAA; 0.5 M), resulted in significant increases in root 20E levels. At the concentrations tested, indole-3-acetic acid (IAA), gibberellic acid (GA3), abscisic acid (ABA), and trans-zeatin (Z) had no effects on root 20E concentrations. However, both NAA (0.5–5.0 M) and Z (5.0 M) treatments caused increases in the root/shoot dry mass ratios, indicating shifts in resource allocation to the roots. Treatments involving ABA (5.0 M) and Z (0.5–5.0 M) caused significant increases in shoot 20E concentrations. No other hormone treatments altered shoot accumulation patterns. The mechanisms underlying the root 20E induction phenomena were investigated through the incorporation of [2-14C]mevalonic acid ([14C]MVA). Within one day, excised roots readily incorporated radioactivity into 20E from [14C]MVA. In intact plants, [14C]MVA absorbed by the roots was rapidly incorporated into root 20E pools following damage and MJ treatments. This implies that the wound-induced root 20E accumulation is the result of increased de novo 20E synthesis in the root.  相似文献   

6.
Previous experiments showed that legumes grown in the presence of living or herbicidally treated quackgrass residues or extracts exhibited reduced seedling root and shoot growth and decreased nodulation and nitrogen fixation. Aqueous extracts of quackgrass shoots were most inhibitory to plant growth. Upon sequential partitioning of an aqueous extract of quackgrass shoots, the ether extract possessed the most activity and caused 50% reductions in radicle elongation of eight crop and weed species at concentrations of less than 240 g/ml (small-seeded species) and 1000 g/ml (large-seeded species). Snapbeans (Phaseolus vulgaris L. Bush Blue Lake) grown aseptically in agar containing an ether extract at 100 and 200 g/ml exhibited severe root browning, lack of root hair formation, and a two- to three-fold reduction in root and shoot dry weights. The ether extract of quackgrass shoots had no inhibitory effect on the growth of fourRhizobium species in Petri dishes or two species in broth culture. Inhibitors present in the ether extract may influence the legumeRhizobium symbiosis indirectly by reducing legume root growth and root hair formation. The ether extract of quackgrass shoots was separated using high-pressure liquid, thin-layer, and liquid column chromatography in an attempt to isolate and identify the inhibitors responsible for the inhibition of seedling growth. Two closely related flavonoid inhibitors were isolated from the ether extract. One was identified as 5,7,4-trihydroxy-3,5-dimethoxyflavone (tricin). Both flavonoids caused 50% inhibition of radicle elongation in cress (Lepidium sativum L. Burpee curly) seeds at concentrations of less than 125 g/ml. Both flavonoids were found in ether extracts of quackgrass shoots and rhizomes, but the largest amounts of both compounds occurred in quackgrass shoots collected from the field.Journal article No. 11887 of the Michigan Agricultural Experiment Station.  相似文献   

7.
The relative effect of parthenium (Parthenium hysterophorus L.) plant residue on growth of salvinia and paddy seedlings was studied. The inhibitory activity of the residue as shown by its effect on the number of healthy fronds (HFN) and biomass was in the order: flower and leaf > stem and root. The flower (FP) and leaf (LP) residue was lethal at and above 0.75% (w/v, the convention used throughout), and inhibitory at lower doses. The stem (SP) and root (RP) residue supported growth of salvinia at lower doses and were slightly inhibitory at higher (1.25%) dose. All the above residue types supported the growth of paddy seedlings except at 1.25%, the highest concentration tested, which was slightly inhibitory. The amounts of chlorophylla, b, total chlorophyll, and carotenoid pigments in the leaves of the paddy seedlings grown in the medium were comparable to the amounts in the leaves of seedlings grown in distilled water. This demonstrates beneficial effects of the treatments. The study shows that salvinia is more sensitive to allelochemicals released by FP and LP into the aqueous medium. Both salvinia and paddy responded similarly to SP and RP by supporting growth at lower doses, probably due to lower levels of inhibitors. The results are discussed with reference to the possible role of allelopathy by parthenium on the population dynamics of aquatic weeds in natural ecosystems.  相似文献   

8.
Parthenium (Parthenium hysterophorus L.) leaf residue (LP, leaf powder) inhibited salvinia (Salvinia molesta Mitchell) biomass and the number of healthy fronds at 0.25% (w/v) and killed the treated plants at and above 0.75% (w/v) in about 5–15 days, depending on the quantity of the residue. At the lethal dose, the LP caused an abrupt desiccation of above-water plant parts, probably due mainly to root dysfunction. This was concurrent with the loss of dehydrogenase activity in, and an increase in solute leakage from, the roots and loss of chlorophylla, b, and total chlorophyll contents in the fronds, resulting in death of the treated plants. The LP appears inhibitory to salvinia through affecting macromolecules—proteins, lipids, and nucleic acids. The inhibitory activity of LP at the lethal dose suspended in water was completely lost when allowed to stand for 30 days under outdoor conditions and promoted growth of the salvinia plants placed in it. The standard allelochemicals, including those present in parthenium LP, except parthenin andp-hydroxybenzoic acid, did not inhibit growth up to 100 ppm. However, parthenin andp-hydroxybenzoic acid killed salvinia plants at 100 and 50 ppm, respectively. Sincep-hydroxybenzoic acid is unlikely to be present at such a high concentration, parthenin appears to be one of the main allelochemicals responsible for the inhibitory effect of parthenium leaf residue on salvinia.A portion of this work was presented at the International Symposium on Weed Management for Sustainable Agriculture held at C.C.S. Haryana Agricultural University, Hissar, India, November 18–20, 1993.  相似文献   

9.
Chemical analyses performed on the invasive weed Phytolacca americana (pokeweed) growing in industrially contaminated (Ulsan) and noncontaminated (Suwon) sites in South Korea indicated that the levels of phenolic compounds and various elements that include some heavy metals (Al, As, B, Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn) were statistically higher in Ulsan soils compared to Suwon soils with Al being the highest (>1,116 mg/l compared to 432 mg/l). Analysis of metals and nutrients (K, Na, Ca, Mg, Cl, NH4, N, P, S) in plant tissues indicated that accumulation occurred dominantly in plant leaves with Al levels being 33.8 times higher in Ulsan plants (PaU) compared to Suwon plants (PaS). The ability of PaU and PaS to tolerate stress was evaluated under controlled conditions by varying atmospheric CO2 and temperature and soil pH. When grown in pH 6.4 soils, the highest growth rate of PaU and PaS plants occurred at elevated (30°C) and non-elevated (25°C) temperatures, respectively. Both PaU and PaS plants showed the highest and lowest growth rates when exposed to atmospheric CO2 levels of 360 and 650 ppm, respectively. The impact of soil pH (2–6.4) on seed germination rates, plant growth, chlorophyll content, and the accumulation of phenolics were measured to assess the effects of industrial pollution and global-warming-related stresses on plants. The highest seed germination rate and chlorophyll content occurred at pH 2.0 for both PaU and PaS plants. Increased pH from 2–5 correlated to increased phenolic compounds and decreased chlorophyll content. However, at pH 6.4, a marked decrease in phenolic compounds, was observed and chlorophyll content increased. These results suggest that although plants from Ulsan and Suwon sites are the same species, they differ in the ability to deal with various stresses.  相似文献   

10.
Iron chlorosis is widespread in many plants grown in calcareous soil and induces economic losses in crop production. In Egypt, this phenomenon commonly occurs, particularly in the north-western coastal zones adjacent to the Mediterranean Sea. The remedy of iron chlorosis is accordingly crucial. Two experiments were carried out in a greenhouse to evaluate some organic acids for enhancing the Fe status and correcting iron chlorosis in two soybean genotypes. Results showed that the ameliorative effect of organic acids depends on its type, level added, soybean genotype and Fe levels. Citric and salicylic acid were more pronounced in improving the dry matter, chlorophyll content, ferrous leave content, Fe and Zn uptake by two soybean genotypes. Therefore, they were better suited for iron chlorosis recovery than caffeic acid. Also, salicylic and citric acid increased 59Fe content in shoot and the percentage of Fe derived from fertilizer (y% for crawford and clark genotype, respectively.  相似文献   

11.
The allelopathic effects of root exudates ofBidens pilosa L. on seedling growth ofLactuca sativa L.,Phaseolus vulgaris L.,Zea mays L., andSorghum bicolor (L.) Moench were studied using a root exudate recirculating system that allows continuous exposure of crop plants to allelopathic chemicals. This system maintains an undisturbed rhizosphere and eliminates competition and physical contact between the donor and acceptor plants. Comparison of responses to hydrophobic and hydrophilic root exudates is made possible by removal of hydrophobic compounds using XAD-4. Treatments consisted ofB. pilosa, B. pilosa with an Amberlite XAD-4 resin column attached to the donor pot to remove hydrophobic allelochemicals, and a donor pot without weeds.B. pilosa significantly inhibited seedling growth of all crop species tested. The crop species varied in response to the root exudates, withL. sativa being most sensitive. Larger and olderB. pilosa plants caused greater inhibition of seedling growth ofL. sativa andP. vulgaris than did smaller (younger)B. pilosa plants.B. pilosa with XAD-4 caused significantly less inhibition to all crop species, exceptZ. mays, thanB. pilosa without XAD-4, indicating that the hydrophobic exudates played an important role in the allelopathic growth inhibition. Variability in species response toB. pilosa with and without XAD-4 was probably due to differences in sensitivity to hydophobic and hydrophilic allelochemicals.Supported by a grant under USDA Agreement No. 83-CRSR-2-2293. Journal Series No. 2887 of the Hawaii Institute of Tropical Agriculture and Human Resources.  相似文献   

12.
We examined the allelochemical effects of control soil, native soil (treated soil), and leaf extracts of Phytolacca americana (pokeweed) on the germination rate and seedling growth of Cassia mimosoides var. nomame. We also studied the resulting changes in root-tip ultrastructure and peroxidase isozyme biochemistry. P. americana leaf extract inhibited seed germination, seedling growth, and biomass when compared to control and treated soil. Root and shoot growth in treated soil was stimulated relative to control soil, but root growth was inhibited by 50% in the leaf extract treatment. Biomass of C. mimosoides seedlings grown on leaf extract was reduced sevenfold when compared to the control seedlings. The amounts of total phenolic compounds in the leaf extract, treated soil, and control soil were 0.77, 0.14, and 0.03 mg l−1, respectively. The root tips of C. mimsoides treated with leaf extracts of P. americana showed amyloplasts and large central vacuoles with electron-dense deposits inside them when compared to control root tips. The activity of guaiacol peroxidase (GuPOX) in whole plant, roots, and shoots of C. mimosoides increased as leaf extract increased; maximum activity was observed in extract concentrations of 75% and higher. Root GuPOX activity was three times higher than in shoots. Therefore, we conclude that inhibition of C. mimosoides growth is related to the phenolic compounds in the P. americana leaf extract and the ultrastructure changes in root-tip cells and increased GuPOX activity is a response to these allelochemicals.  相似文献   

13.
The influence of autoclaved fungal materials such as culture filtrate, freeze-dried mycelium (FDM), mycelium suspension, and spore suspension (SS) on the growth, morphogenesis, and carvone production of spearmint (Mentha spicata L.) plants was studied. Fungal materials were either applied as a drench or spray on the plants. Spearmint plants (cv. “294099”) drenched with SS (1 × 108 spores/ml) of Trichoderma reesei showed no significant differences in leaf numbers, root numbers, or shoot numbers compared with nontreated controls. However, significantly higher fresh weights and carvone levels were observed in plants drenched with T. reesei SS compared with the untreated controls. Fungal materials derived from Aspergillus sp., Fusarium graminearum, F. sporotrichoides, Penicillium sp., P. acculeatum, Rhizopus oryzae, and T. reesei were sprayed on spearmint foliage. F. graminearum, F. sporotrichoides, or R. oryzae elicited no enhanced growth, morphogenesis, or secondary metabolism responses. The best growth and morphogenesis responses were obtained employing Aspergillus sp., Penicillium sp., or T. reesei foliar sprays. For example, spearmint cv. “557807” plants sprayed with 100 mg/l FDM T. reesei isolate NRRL 11460 C30 stimulated higher fresh weights (75%), shoot numbers (39%), leaf numbers (57%), and root numbers (108%) compared with untreated plants. This effect was not dose-dependent because similar growth and morphogenesis responses were obtained by testing 10, 100, or 1000 mg/l FDM concentrations. Carvone levels in fungal-treated foliar-sprayed plants were comparable to nontreated controls. However, total carvone levels per plant were higher in fungal-treated plants because of their increased fresh weight.Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

14.
The allelopathic effect of parthenium (Parthenium hysterophorus L.) leaf residue (dry leaf powder, DLP) on water hyacinth (Eichhornia crassipes Mart Solms.) was studied. The treatment caused wilting starting from the margins of the older leaves and desiccation of above-water plant parts (shoot). Appearance, persistence, and disappearance of symptoms depended on the level and duration of the treatment and recovery of the treated plants, if it occurred. The treatment drastically reduced the number of healthy leaves (HLN) and the plant biomass at 0.25% (w/v) DLP; the treated plants recovered in about one month. At and above 0.50% (w/v) DLP, the plants were killed in about one month, resulting in sinking of the dead mass in water. Physiological effects of the treatment included deterioration of membrane integrity, loss of dehydrogenase activity with concurrent drastic reduction or total failure of water absorption by the roots, and reduction of chlorophyll contents in the leaves. The results indicate that the inhibitors leached out of the DLP affected the water hyacinth plants through changes in macromolecules: protein, lipid, and nucleic acid, resulting in root dysfunction and other inhibitory activities both in the root and shoot. Phenolic and other inhibitors including those found in the parthenium plant (except sesquiterpene lactones which have not been tested) at 50 ppm, exceptp-hydroxybenzoic acid, did not affect the treated plants. Such a high concentration of the allelochemicals is unlikely to be present in the medium at the lethal dose (0.50% w/v) of the DLP. Even withp-hydroxybenzoic acid, the plants recovered subsequently and grew normally. Thus, it appears that other allelochemicals including sesquiterpene lactones were mainly responsible for the inhibitory activity of the DLP on water hyacinth plants.  相似文献   

15.
Phenolic compounds have been identified as the most common allelochemicals produced by higher plants. Inhibitions of cinnamic acid, its related phenolic derivatives, and abscisic acid (ABA) on seedling growth and seed germination of lettuce were studied.trans-Cinnamic acid, ando-,m-, andp-coumaric acids inhibited the growth of etiolated seedlings of lettuce at concentrations higher than 10–4 M and seed germination above 10–3 M. Coumarin inhibited seedling growth and seed germination at 10–5 M or above. Chlorogenic acid inhibited seedling growth above 10–4 M, but did not inhibit seed germination at 10–5–5×10–3 M. Low concentrations (below 10–3 M) of caffeic and ferulic acids promoted the elongation of hypocotyls, but higher concentrations (over 10–3 M) inhibited seedling growth and seed germination. These phenolic compounds and abscisic acid had additive inhibitory effects both on seedling growth and seed germination. The inhibition on lettuce was reversed by caffeic and ferulic acids at concentrations lower than 10–3 M except for the inhibition of germination by coumarin. These results suggest that in naturetrans-cinnamic acid,o-, m-, p-coumaric acids, coumarin, and chlorogenic acid inhibit plant growth regardless of their concentration. However, caffeic and ferulic acids can either promote or inhibit plant growth according to their concentration.  相似文献   

16.
Leaf damage by herbivores inNicotiana sylvestris Spegazzini and Comes (Solanaceae) produces a damage signal that dramatically increasesde novo nicotine synthesis in the roots. The increased synthesis leads to increases in whole-plant nicotine pools, which in turn make plants more resistant to further herbivore attack. Because signal production and the response to the signal occur in widely separated tissues, the speed with which different damage signals exit a damaged leaf can be studied. We propose that electrical damage signals should exit a leaf faster (less than 60 min) than chemical damage signals. Excision of a leaf induces a smaller increase in nicotine production than does puncture damage, so we examined our proposition by excising previously punctured leaves at 1, 60, and 960 min after leaf puncture and quantifying the induced whole-plant nicotine pools six days later when the induced nicotine production had reached a maximum. Significant induced nicotine production occurred only if punctured leaves were excised more than 1 hr after puncture, which is consistent with the characteristics of a slow-moving chemical signal rather than a fast-moving electrical signal. We explore the nature of the chemical signal and demonstrate that additions of 90µg or more of methyl jasmonate (MJ) in an aqueous solution to the roots of hydroponically grown plants inducede novo nicotine synthesis from15NO3 in a manner similar to that induced by leaf damage. We examine the hypothesis that jasmonic acid (JA) functions in the transfer of the damage signal from shoot to root. Using GC-MS techniques to quantify whole-plant JA pools, we demonstrate that leaf damage rapidly (<0.5 hr) increases shoot JA pools and, more slowly (<2 hr), root JA pools. JA levels subsequently decay to levels found in undamaged plants within 24 hr and 10 hr for shoots and roots, respectively. The addition of sufficient quantities (186µg) of MJ in a lanolin paste to leaves from hydroponically grown plants significantly increased endogenous root JA pools and increasedde novo nicotine synthesis in these plants. However, the addition of 93µg or less of MJ did not significantly increase endogenous root JA pools and did not significantly affectde novo nicotine synthesis. We propose that wounding increases shoot JA pools, which either directly through transport or indirectly through a systemin-like signal increase root JA pools, which, in turn, stimulate root nicotine synthesis and increase whole-plant nicotine pools.  相似文献   

17.
We tested the hypothesis that ontogenetic variation in leaf chemistry could affect the efficacy of genetically expressed Bacillus thuringiensis cry1A(a) d-endotoxin, and thus provide spatial variation in (1) foliage protection and (2) selective pressures that could delay the resistance of folivores. Our model consisted of clonal hybrid Populus plants (NC5339). Consumption of foliage and relative growth rates of gypsy moth, Lymantria dispar (L.) increased, and phenolic glycoside concentrations decreased, as leaves from transformed plants containing the cry1A(a) d-endotoxin and nontransformed plants matured from leaf plastochron index (LPI) 1–6. Feeding and growth rates were negatively correlated with phenolic glycosides in both transformed and nontransformed foliage. The presence of the B. thuringiensis d-endotoxin was at most, additive to the effect of the phenolic glycosides. Feeding and growth rates were positively correlated with condensed tannins in transformed foliage, but there was no relationship with condensed tannins in nontransformed foliage. The results indicate that the presence of foliar allelochemicals of poplar can enhance the effectiveness of genetically expressed B. thuringiensis d-endotoxin against gypsy moth larvae. However, the spatial variation in gypsy moth performance in response to the combination of foliar allelochemicals and d-endotoxin was not greater than the effect of ontogenetic variation in foliar allelochemicals alone. These results suggest that for this important pest, foliage protection may be obtained without genetically engineered defenses, and instead, by relying on ontogenetic and clonal variation in allelochemicals. The benefits of combining novel resistance mechanisms with natural ones will depend upon the specific folivore's adaptation to natural resistance mechanisms, such as allelochemicals. Moreover, some of the greatest benefits from transgenic resistance may arise from the need to protect trees from multiple pests, some of which may not be deterred by, or may even prefer, allelochemicals that confer protection from a few species.  相似文献   

18.
The allelopathic potential of the cucurbit Sicyos deppei has been reported. Aqueous leachates (1% w/v) of S. deppei significantly inhibited the radicle growth of several test plants. Root tips of treated plants were thicker, with a brownish color as compared to control roots. Light microscope observations of treated root tips of Phaseolus vulgaris showed that cells around the quiescent center appeared compressed. Tissues were disorganized and lacked evident cell differentiation. Cucurbita ficifolia did not show these differences in root morphology. Scanning and electron microscope observations showed that treated roots of both P. vulgaris and C. ficifolia had ultrastructural alterations of certain organelles, the plasma membrane, and cell walls. Root cap cells of treated roots showed amorphous and inactivated (nondividing) nuclei, mitochondria, and endoplasmic reticulum. Vacuoles in treated cells showed invaginations that may correspond to engulfing of damaged cellular components.  相似文献   

19.
Leavenworthia uniflora (Cruciferae) is a winter annual that is restricted to shallow, limestone soils that are subject to waterlogging from late autumn to early spring. To determine its responses and adaptations to waterlogged soil, the effect of flooding on growth and alcohol dehydrogenase (ADH) activity was studied. During a 31-day growth period, the average relative growth rate of plants grown in flooded soil was 54 mg g–1 d–1, and that of plants grown in unflooded soil was 68 mg g–1 d–1. Flooding did not cause an increase in ADH activity, implying that ethanol did not accumulate, and thatL. uniflora is metabolically adapted to growing with its roots under anaerobic conditions.  相似文献   

20.
Leafy spurge (Euphorbia esula), a native perennial weed introduced from Eurasia around the turn of the century, disrupts natural and agroecosystems across much of the Northern Great Plains. While leafy spurge displaces many native plant species, it has been demonstrated that small everlasting (Antennaria microphylla), a native perennial, is allelopathic to leafy spurge. Caffeic acid (CA), one of three compounds isolated from small everlasting, inhibits leafy spurge seed germination, root elongation, and callus culture growth. This study investigated the mechanism of this interference at the whole-plant level. Results indicate that inhibition of growth in leafy spurge after exposure to CA is primarily due to a disruption of plant–water relations. Leafy spurge cuttings were propagated in 0.5 strength Hoagland's nutrient solution for 30 days. For treatments, six plants were transferred into nutrient medium amended with either 0.1 or 0.25 mM CA for a period of 30 days. To determine the effect of pH, two additional groups of six plants were grown in nutrient medium adjusted with HCl corresponding to pH levels of plants treated with CA (pH 5.5–5.8 for 0.1 mM CA and pH 4.5–4.8 for 0.25 mM CA). By day 12 of the treatment period, plants treated with both levels of CA had significantly higher leaf diffusive resistances than control plants. Plants grown at the corresponding pH levels experienced higher diffusive resistances later in the treatment period (day 21). Transpiration was similarly affected with treated plants showing relatively higher transpiration rates compared to controls. Chlorophyll fluorescence was significantly lower than controls in all treated plants by end of the treatment period. The stable carbon isotope ratio (13C:12C) in these plants was higher than controls. These data show that a disruption of plant water relations is the primary mechanism of plant growth inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号