首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study on preparation of Cd0.96Zn0.04Te(211)B substrates for growth of Hg1−xCdxTe epitaxial layers by molecular beam epitaxy (MBE) was investigated. The objective was to investigate the impact of starting substrate surface quality on surface defects such as voids and hillocks commonly observed on MBE Hg1−xCdxTe layers. The results of this study indicate that, when the Cd0.96Zn0.04Te(211)B substrates are properly prepared, surface defects on the resulting MBE Hg1−xCdxTe films are reduced to minimum (size, ∼0.1 m and density ∼500/cm2) so that these MBE Hg1−xCdx Te films have surface quality as good as that of liquid phase epitaxial (LPE) Hg1−xCdxTe films currently in production in this laboratory.  相似文献   

2.
Growth of Hg1−xCdxTe by molecular beam epitaxy (MBE) has been under development since the early 1980s at Rockwell Scientific Company (RSC), formerly the Rockwell Science Center; and we have shown that high-performance and highly reproducible MBE HgCdTe double heterostructure planar p-on-n devices can be produced with high throughput for various single- and multiplecolor infrared applications. In this paper, we present data on Hg1−xCdxTe epitaxial layers grown in a ten-inch production MBE system. For growth of HgCdTe, standard effusion cells containing CdTe and Te were used, in addition to a Hg source. The system is equipped with reflection high energy electron diffraction (RHEED) and spectral ellipsometry in addition to other fully automated electrical and optical monitoring systems. The HgCdTe heterostructures grown in our large ten-inch Riber 49 MBE system have outstanding structural characteristics with etch-pit densities (EPDs) in the low 104 cm−2 range, Hall carrier concentration in low 1014 cm−3, and void density <1000 cm2. The epilayers were grown on near lattice-matched (211)B Cd0.96Zn0.04Te substrates. High-performance mid wavelength infrared (MWIR) devices were fabricated with R0A values of 7.2×106 Ω-cm2 at 110 K, and the quantum efficiency without an antireflection coating was 71.5% for cutoff wavelength of 5.21 μm at 37 K. For short wavelength infrared (SWIR) devices, an R0A value of 9.4×105 Ω-cm2 at 200 K was obtained and quantum efficiency without an antireflection coating was 64% for cutoff wavelength of 2.61 μm at 37 K. These R0A values are comparable to our trend line values in this temperature range.  相似文献   

3.
Time relaxation of the electrical conductivity σ(77 K) and Hall coefficient RH(77 K) of the n-type layer created by ion milling is investigated in Hg vacancy-doped, As-doped, and In-predoped p-type, and In-doped n-type Hg1−xCdxTe (0.2 < x < 0.22) samples. We show that the n-type layer is formed, and the temperature-activated relaxation occurs in all cases. The annealing at 75°C results in a gradual degradation of the converted n-type layer and a back n-to-p conversion within 8 days. The existence of a high-conducting, surface-damaged region with a high-electron density (∼1018 cm−3) and a low mobility (∼103 cm2/Vs) is confirmed, and its influence on the relaxation is studied.  相似文献   

4.
The epitaxial layers of Hg1−xCdxTe (0.17≦×≦0.3) were grown by liquid phase epitaxy on CdTe (111)A substrates using a conventional slider boat in the open tube H2 flow system. The as-grown layers have hole concentrations in the 1017− 1018 cm−3 range and Hall mobilities in the 100−500 cm2/Vs range for the x=0.2 layers. The surfaces of the layers are mirror-like and EMPA data of the layers show sharp compositional transition at the interface between the epitaxial layer and the substrate. The effects of annealing in Hg over-pressure on the properties of the as-grown layers were also investigated in the temperature range of 250−400 °C. By annealing at the temperature of 400 °C, a compositional change near the interface is observed. Contrary to this, without apparent compositional change, well-behaved n-type layers are obtained by annealing in the 250−300 °C temperature range. Sequential growth of double heterostructure, Hgl−xCdxTe/Hgl−yCdyTe on a CdTe (111)A substrate was also demonstrated.  相似文献   

5.
HgCdZnTe quaternary materials for lattice-matched two-color detectors   总被引:1,自引:0,他引:1  
As the number of bands and the complexity of HgCdTe multicolor structures increases, it is desirable to minimize the lattice mismatch at growth interfaces within the device structure in order to reduce or eliminate mismatch dislocations at these interfaces and potential threading dislocations that can degrade device performance. To achieve this we are investigating the use of Hg1−x−yCdxZnyTe quaternary alloys which have an independently tunable lattice constant and bandgap. Lattice matching in Hg1−x−yCdxZnyTe structures can be achieved using small additions of Zn (y<0.015) to HgCdTe ternary alloys. We have investigated some of the basic properties of Hg1−x−yCdxZnyTe materials with x≈0.31 and 0≤y≤0.015. The quaternary layers were grown on (112)CdZnTe substrates using MBE and the amount of Zn in the layers was determined from calibrated SIMS measurements. As expected, the lattice constant decreased and the bandgap increased as Zn was added to HgCdTe to form Hg1−x−yCdxZnyTe. Hall-effect results for both n-type (In) and p-type (As) Hg1−x−yCdxZnyTe layers were very similar to HgCdTe control samples. We have also utilized x-ray rocking curve measurements with (246) asymmetric reflections as a novel sensitive technique to determine the correct amount of Zn needed to achieve lattice matching at an interface. MWIR/LWIR n-p-n two-color triple-layer heterojunction structures were grown to evaluate the effects of minimizing the lattice mismatch between the widest bandgap p-type collector layer, using Hg1−x−yCdxZnyTe, and the HgCdTe MWIR and LWIR collector layers and compared to structures that did not incorporate the quaternary. Sequential mode two-color detectors were fabricated using a 256 × 256, 30 μm unit cell design. There were several interesting findings. Macro defects predominantly affected the LWIR band (Band 2) operability and had little effect on the MWIR band (Band 1). The incorporation of Hg1−x−yCdxZnyTe p-type collector layers had little effect on MWIR detector performance, but overall the LWIR performance was generally better. These initial detector results indicate that the use of Hg1−x−yCdxZnyTe alloys in multicolor detector structures are potentially promising and should be pursued further.  相似文献   

6.
Epitaxial layers of Hg1−xCdx Te were grown on CdTe substrates by the chemical vapor transport technique using Hgl2 as a transport agent. The epilayers were of nearly uniform composition both laterally and to a depth of about one-half of the layer thickness. By comparison, the composition varied continuously throughout the depth of the layer for epilayers grown by the physical vapor transport technique. Layers were grown both p- and n-type with carrier concentrations on the order of 1017 cm−3. Low-temperature annealing was used to convert the p-type layers into n-type. The room-temperature carrier mobilities of as-grown and converted n-type layers ranged from 103 to 104 cm2/V-s depending on the composition and are comparable to previous literature values for undoped Hg1−xCdxTe crystals.  相似文献   

7.
Hg1−xCdxTe films were grown liquid phase epitaxially from tellurium rich solutions containing up to 10 at. % of the group V elements P, As, Sb, and Bi. Chemical analysis of the Te growth solutions and the films was carried out in conjunction with extensive Hall effect measurements on the films subsequent to various annealing treatments under Hg rich and Te rich conditions. Despite the presence of a large concentration of the group V elements in the Te source solution, the maximum concentration of these elements incorporated into the liquid phase epitaxially grown Hg1-xCdxTe appears to vary from <1015cm−3 for Bi up to 1017cm−3 for phosphorus and As implying a distribution coefficient varying from <10−5 for Bi up to 10−3 for P at growth temperature of ∼500° C. This low value of the distribution coefficient for group V elements for growths from Te rich solutions contrasts with the moderately high values reported in the literature to date for growth from Hg rich solutions as well as pseudobinary solutions (Bridgman growth). The widely differing distribution coefficients and hence the solubility of the group V elements for Hg rich and Te rich liquid phase epitaxial solutions is explained on the basis that the activity coefficient of the group V elements in Te rich solutions is probably orders of magnitude lower than it is in Hg rich solutions. Finally, the results of the anneals at 200° C under Hg saturated conditions with and without a 500° C Hg saturated preanneal have indicatedn top conversion in many of the films attesting to the amphoteric behavior of the group V elements in LPE grown Hg1−xCdxTe(s) similar to the previously reported behavior of P in bulk grown Hg0.8Cd0.2Te.  相似文献   

8.
Mercury radiotracer diffusion results are presented, in the range 254 to 452°C, for bulk and epitaxial CdxHg1–xTe, and we believe this to be the first report for metalorganic vapor phase epitaxy (MOVPE) grown CdxHg1–xTe. For all growth types studied, with compositions of xCd=0.2±0.04, the variation of the lattice diffusion coefficient, DHg, with temperature, under saturated mercury partial pressure, obeyed the equation: DHg=3×10−3 exp(−1.2 eV/kT) cm2 s−1. It was found to have a strong composition dependence but was insensitive to changes of substrate material or crystal orientation. Autoradiography was used to show that mercury also exploited defect structure to diffuse rapidly from the surface. Dislocation diffusion analysis is used to model defect tails in MOVPE CdxHg1–xTe profiles.  相似文献   

9.
This work deals with the study by means of radioactive tracers and autoradiography, as well as measuring of galvanomagnetic properties, of Ga and In doping of epitaxial CdxHg1−xTe layers during their crystallization from a Te-rich melt. Ga and In were introduced in the form of Ga72 and In114 master alloys with Te. The effective distribution coefficients of Ga and In during the crystallization of the CdxHg1−xTe solid solutions with x=0.20 to 0.23 were determined by cooling the Te-base melt to 515–470°C. Depending on the concentration of the dopants and the time-temperature conditions of CdxHg1−xTe growth, these ratios for Ga and In were 1.5–2.0 and 1.0–1.5, respectively. The electrical activity of Ga and In was determined after annealing of the CdxHg1−xTe layers in saturated Hg vapor at 270–300°C. In doping of the epitaxial layers to (3–8)×1014 cm−3 with subsequent annealing in saturated Hg vapor at ∼270°C increases the carrier lifetime approximately by a factor of two as compared with the undoped material annealed under the same conditions.  相似文献   

10.
The requirement for two color Sprite detectors, with elements sensitive in the ranges 3-5 μn (MW) and 8-14 μn (LW) at 77K, is met using Hg1−xCdxTe elements of composition x = 0.3 and x = 0.2, respectively. The need for low defect levels for increased performance indicates the use of liquid phase epitaxy (LPE). While LW material is fairly well characterized, the growth and conversion to n-type of MW LPE has proved more difficult. Reported work shows limited data and limited success in converting MW LPE to n-type, and this primarily in donor-doped material. This paper describes the growth, annealing to n-type and characterization of Hg0.7Cd0.3Te. High n-type conversion yields were obtained, with low donor levels (mid-1013 to mid-1014 cm−3), high mobility (>104 cm2 (Vs)−1) and long minority carrier lifetime (>10 us).  相似文献   

11.
Hg1−x Cd x Te samples of x ~ 0.3 (in the midwave infrared, or MWIR, spectral band) were prepared by molecular beam epitaxy (MBE) for fabrication into 30-μm-pitch, 256 × 256, front-side-illuminated, high-density vertically-integrated photodiode (HDVIP) focal plane arrays (FPAs). These MBE Hg1−x Cd x Te samples were grown on CdZnTe(211) substrates prepared in this laboratory; they were ~10-μm thick and were doped with indium to ~5 × 1014 cm−3. Standard HDVIP process flow was employed for array fabrication. Excellent array performance data were obtained from these MWIR arrays with MBE HgCdTe material. The noise-equivalent differential flux (NEΔΦ) operability of the best array is 99.76%, comparable to the best array obtained from liquid-phase epitaxy (LPE) material prepared in this laboratory.  相似文献   

12.
We zone-engineered HgCdTe/HgTe/HgCdTe quantum wells (QWs) using the molecular-beam epitaxy (MBE) method with in situ high-precision ellipsometric control of composition and thickness. The variations of ellipsometric parameters in the ψ–Δ plane were represented by smooth broken curves during HgTe QW growth with abrupt composition changes. The form of the spiral fragments and their extensions from fracture to fracture revealed the growing layer composition and its thickness. Single and multiple (up to 30) Cd x Hg1−x Te/HgTe/Cd x Hg1−x Te QWs with abrupt changes of composition were grown reproducibly on (013) GaAs substrates. HgTe thickness was in the range of 16 nm to 22 nm, with the central portion of Cd x Hg1−x Te spacers doped by In to a concentration of 1014 cm−3 to 1017 cm−3. Based on this research, high-quality (013)-grown HgTe QW structures can be used for all-electric detection of radiation ellipticity in a wide spectral range, from far-infrared (terahertz radiation) to mid-infrared wavelengths. Detection was demonstrated for various low-power continuous-wave (CW) lasers and high-power THz pulsed laser systems.  相似文献   

13.
Using the molecular beam epitaxial (MBE) technique, CdTe and Hg1-xCdxTe have been grown on Cr-doped GaAs (100) sub-strates. A single effusion cell charged with polycrystal-line CdTe is used for the growth of CdTe films. The CdTe films grown at 200 °C with a growth rate of ~ 2 μm/hr show both streaked and “Kikuchi” patterns, indicating single crystalline CdTe films are smoothly grown on the GaAs sub-strates. A sharp emission peak is observed at near band-edge (7865 Å, 1.577 eV) in the photoluminescence spectrum at 77 K. For the growth of Hg1-xCdxTe films, separate sources of HgTe, Cd and Te are used. Hg0.6Cd0.4Te films are grown at 50 °C with a growth rate of 1.7 μm/hr. The surfaces are mirror-smooth and the interfaces between the films and the substrates are very flat and smooth. As-grown Hg0.6Cd0.4Te films are p-type and converted into n-type by annealing in Hg pressure. Carrier concentration and Hall mobility of an annealed Hg0.6Cd0.4Te film are 1 × 1017 cm?3 and 1000 cm2/V-sec at 77 K, respectively.  相似文献   

14.
A systematic study of the effect of measurement perturbation on in situ monitoring of the composition of molecular beam epitaxially (MBE) grown Hg1−xCdxTe using spectroscopic ellipsometry was carried out. Of the five variables investigated, which included angle of incidence, wavelength of the light beam, modulator rotation, analyzer rotation, and modulator amplitude, the angle of incidence and the modulator rotation had the strongest effect on the in situ Hg1−xCdxTe composition monitoring process. A wobble-free sample manipulator was installed to reduce the impact of these two variables. With these improvements, the spectroscopic ellipsometer is now routinely used to monitor Hg 1−xCdxTe compositions during MBE growth of heterostructures and is a useful tool in diagnosing growth-related problems. Examples are included for both application areas, that include the control of the interface between Hg1−xCdxTe layers of different compositions, i.e. device engineering.  相似文献   

15.
The effects of microvoid defects on the performance of mid-wavelength infrared (MWIR) HgCdTe-based diodes were examined. Molecular beam epitaxy (MBE) was utilized to deposit indium-doped, Hg0.68Cd0.32Te on 2 cm × 3 cm, (211)B-oriented, bulk Cd0.96Zn0.04Te substrates. These epilayers generally exhibited state-of-the-art material properties with a notable exception: high and nonuniform microvoid defect densities (mid 104 cm−2 to low 106 cm−2). Diodes were fabricated by ion implantation of arsenic to form planar pn junctions. Dark current–voltage (IV) curves were measured and analyzed as a function of operating temperature. There was an inverse correlation between wafer-level microvoid defect density and device operability. On each wafer, devices with the smallest implants exhibited higher operability than devices with larger implants. By removal of pad metal and examination of defects within each implant area, it was found that the presence of one or more microvoids within the junction usually caused tunneling or other high-current mechanisms. Diodes free from microvoids exhibited diffusion-limited behavior down to 150 K, the test set limit.  相似文献   

16.
Cd1−xZnxTe compounds of different compositions have been prepared at temperatures ranging from 400 to 1000°C by annealing elemental Te in sealed quartz ampoules, in an atmosphere comprising vapors of Cd and Zn whose partial pressures were varied by varying the composition of the binary Cd1−yZny alloys which provided the Cd and Zn vapors in these annealing experiments. The chemical compositions of the resulting Cd1−xZnxTe compounds have been analyzed using electron probe microanalytical techniques. Results indicate that presence of a 0.5%Zn along with Cd in a closed or semi-closed system may prove to be beneficial in preventing decomposition and/or formation of a metal/non metal phase during annealing of Cd0.96Zn0.04 Te substrates. Using the thermodynamic data in the literature for the binary Cd1−yZny alloys and with the assumption that the activities of the Cd and Zn components are weakly dependent on temperature, the partial pressures of Cd and Zn in equilibrium with the Cd1−xZnxTe compounds at various temperatures have been evaluated.  相似文献   

17.
HgTe/Hg0.05Cd0.95Te superlattices (SLs) were grown on (112)B oriented Cd0.96Zn0.04 Te substrates using molecular beam epitaxy (MBE). The SLs, consisting of 100 periods of 80-Å-thick HgTe wells alternating with 77-Å-thick Hg0.05Cd0.95Te barriers, were designed to operate as detectors in the far-infrared (FIR) region. Infrared absorption spectroscopy, high-resolution transmission electron microscopy (TEM), Hall effect measurements, and x-ray diffraction were used to characterize the superlattice layers. A series of annealing experiments were initiated to quantify the temperature-dependent interdiffusion of the HgTe wells and Hg0.05Cd0.95Te barriers and consequently their degradation, which shifts the absorption edges of the SLs to higher energies, since a high-temperature ex situ anneal is normally required in order to produce the p-type material required for a photovoltaic detector. Results from infrared absorption spectroscopy, TEM, and Hall effect measurements for the annealed samples are presented. A FIR SLs single-element photoconductive (PC) device was designed and fabricated. Both material characterization and device testing have established the applicability of the HgTe/Hg0.05Cd0.95Te SLs for the FIR region.  相似文献   

18.
Critical thickness in the HgCdTe/CdZnTe system   总被引:2,自引:0,他引:2  
We present an analysis of the critical thickness of Hg1−xCdxTe on Cd1−yZnyTe substrates as a function of x and y and show that a very tight control of the substrate composition is needed to produce dislocation-free epi-layers. Hg1−xCdxTe layers on relaxed underlayers of different compositions of Hg are also examined.  相似文献   

19.
Treatment with low-energy ions and measurements of electrical parameters of samples have been used to study the defect structure of Cd x Hg1 − x Te films grown by liquid-phase epitaxy. The films contain neutral defects supposedly associated with tellurium nanoinclusions. Ion treatment electrically activates these defects, with a high concentration of donor centers (∼1017 cm−3) created in the films. These defects decompose in ∼103 min of aging at room temperature. Then the properties of the material are determined by the concentration of residual donors, which is found to be very low (down to ∼1014 cm−3) for the films under study.  相似文献   

20.
In this paper, we show the versatility of using molecular-beam epitaxy (MBE) for the growth of the mercury cadmium telluride (HgCdTe) system. Abrupt composition profiles, changes in doping levels or switching doping types are easily performed. It is shown that high-quality material is achieved with Hg(1–x)Cd x Te grown by MBE from a cadmium mole fraction of x = 0.15 to x = 0.72. Doping elements incorporation as low as 1015 cm−3 for both n-type and p-type material as well as high incorporation levels >1018 cm−3 for both carrier types were achieved. X-ray curves, secondary-ion mass spectrometry (SIMS) data, Hall data, the influence of doping incorporation with cadmium content and growth rate, etch pit density (EPD), composition uniformity determined from Fourier-transform infrared (FTIR) transmission spectro- scopy, and surface defect maps from low to high x values are presented to illustrate the versatility and quality of HgCdTe material grown by MBE. All data presented in this work are from layers grown on silicon (112) substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号