首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past decade, many laboratories have begun to explore brain-computer interface (BCI) technology as a radically new communication option for those with neuromuscular impairments that prevent them from using conventional augmentative communication methods. BCI's provide these users with communication channels that do not depend on peripheral nerves and muscles. This article summarizes the first international meeting devoted to BCI research and development. Current BCI's use electroencephalographic (EEG) activity recorded at the scalp or single-unit activity recorded from within cortex to control cursor movement, select letters or icons, or operate a neuroprosthesis. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI which recognizes the commands contained in the input and expresses them in device control. Current BCI's have maximum information transfer rates of 5-25 b/min. Achievement of greater speed and accuracy depends on improvements in signal processing, translation algorithms, and user training. These improvements depend on increased interdisciplinary cooperation between neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective methods for evaluating alternative methods. The practical use of BCI technology depends on the development of appropriate applications, identification of appropriate user groups, and careful attention to the needs and desires of individual users. BCI research and development will also benefit from greater emphasis on peer-reviewed publications, and from adoption of standard venues for presentations and discussion.  相似文献   

2.
The Wadsworth BCI Research and Development Program: at home with BCI.   总被引:1,自引:0,他引:1  
The ultimate goal of brain-computer interface (BCI) technology is to provide communication and control capacities to people with severe motor disabilities. BCI research at the Wadsworth Center focuses primarily on noninvasive, electroencephalography (EEG)-based BCI methods. We have shown that people, including those with severe motor disabilities, can learn to use sensorimotor rhythms (SMRs) to move a cursor rapidly and accurately in one or two dimensions. We have also improved P300-based BCI operation. We are now translating this laboratory-proven BCI technology into a system that can be used by severely disabled people in their homes with minimal ongoing technical oversight. To accomplish this, we have: improved our general-purpose BCI software (BCI2000); improved online adaptation and feature translation for SMR-based BCI operation; improved the accuracy and bandwidth of P300-based BCI operation; reduced the complexity of system hardware and software and begun to evaluate home system use in appropriate users. These developments have resulted in prototype systems for every day use in people's homes.  相似文献   

3.
Real-world applications for brain-computer interface technology   总被引:5,自引:0,他引:5  
The mission of the Georgia State University BrainLab is to create and adapt methods of human-computer interaction that will allow brain-computer interface (BCI) technologies to effectively control real-world applications. Most of the existing BCI applications were designed largely for training and demonstration purposes. Our goal is to research ways of transitioning BCI control skills learned in training to real-world scenarios. Our research explores some of the problems and challenges of combining BCI outputs with human-computer interface paradigms in order to achieve optimal interaction. We utilize a variety of application domains to compare and validate BCI interactions, including communication, environmental control, neural prosthetics, and creative expression. The goal of this research is to improve quality of life for those with severe disabilities.  相似文献   

4.
Parallel man-machine training in development of EEG-based cursor control.   总被引:5,自引:0,他引:5  
A new parallel man-machine training approach to brain-computer interface (BCI) succeeded through a unique application of machine learning methods. The BCI system could train users to control an animated cursor on the computer screen by voluntary electroencephalogram (EEG) modulation. Our BCI system requires only two to four electrodes, and has a relatively short training time for both the user and the machine. Moving the cursor in one dimension, our subjects were able to hit 100% of randomly selected targets, while in two dimensions, accuracies of approximately 63% and 76% was achieved with our two subjects.  相似文献   

5.
Most current brain-computer interface (BCI) systems for humans use electroencephalographic activity recorded from the scalp, and may be limited in many ways. Electrocorticography (ECoG) is believed to be a minimally-invasive alternative to electroencephalogram (EEG) for BCI systems, yielding superior signal characteristics that could allow rapid user training and faster communication rates. In addition, our preliminary results suggest that brain regions other than the sensorimotor cortex, such as auditory cortex, may be trained to control a BCI system using similar methods as those used to train motor regions of the brain. This could prove to be vital for users who have neurological disease, head trauma, or other conditions precluding the use of sensorimotor cortex for BCI control.  相似文献   

6.
A brain-computer interface (BCI) is a system that allows its users to control external devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. Success requires the effective interaction of two adaptive controllers: the user's brain, which produces brain activity that encodes intent, and the BCI system, which translates that activity into device control commands. In order to facilitate this interaction, many laboratories are exploring a variety of signal analysis techniques to improve the adaptation of the BCI system to the user. In the literature, many machine learning and pattern classification algorithms have been reported to give impressive results when applied to BCI data in offline analyses. However, it is more difficult to evaluate their relative value for actual online use. BCI data competitions have been organized to provide objective formal evaluations of alternative methods. Prompted by the great interest in the first two BCI Competitions, we organized the third BCI Competition to address several of the most difficult and important analysis problems in BCI research. The paper describes the data sets that were provided to the competitors and gives an overview of the results.  相似文献   

7.
This paper describes the outcome of discussions held during the Third International BCI Meeting at a workshop charged with reviewing and evaluating the current state of and issues relevant to brain-computer interface (BCI) feature extraction and translation. The issues discussed include a taxonomy of methods and applications, time-frequency spatial analysis, optimization schemes, the role of insight in analysis, adaptation, and methods for quantifying BCI feedback.  相似文献   

8.
A general framework for brain-computer interface design   总被引:7,自引:0,他引:7  
The Brain-Computer Interface (BCI) research community has acknowledged that researchers are experiencing difficulties when they try to compare the BCI techniques described in the literature. In response to this situation, the community has stressed the need for objective methods to compare BCI technologies. Suggested improvements have included the development and use of benchmark applications and standard data sets. However, as a young, multidisciplinary research field, the BCI community lacks a common vocabulary. As a result, this deficiency leads to poor intergroup communication, which hinders the development of the desired methods of comparison. One of the principle reasons for the lack of common vocabulary is the absence of a common functional model of a BCI System. This paper proposes a new functional model for BCI System design. The model supports many features that facilitate the comparison of BCI technologies with other BCI and non-BCI user interface technologies. From this model, taxonomy for BCI System design is developed. Together the model and taxonomy are considered a general framework for BCI System design. The representational power of the proposed framework was evaluated by applying it to a set of existing BCI technologies. The framework could effectively describe all of the BCI System designs tested.  相似文献   

9.
BCI Meeting 2005--workshop on signals and recording methods.   总被引:4,自引:0,他引:4  
This paper describes the highlights of presentations and discussions during the Third International BCI Meeting in a workshop that evaluated potential brain-computer interface (BCI) signals and currently available recording methods. It defined the main potential user populations and their needs, addressed the relative advantages and disadvantages of noninvasive and implanted (i.e., invasive) methodologies, considered ethical issues, and focused on the challenges involved in translating BCI systems from the laboratory to widespread clinical use. The workshop stressed the critical importance of developing useful applications that establish the practical value of BCI technology.  相似文献   

10.
This paper proposes a steady‐state auditory stimulus modality and a detection algorithm to replace steady‐state visual evoked potential (SSVEP )‐based brain–computer interface (BCI ) systems during visual fatigue periods. The optimal speaker position for the steady‐state auditory evoked potential (SSAEP )‐based BCI system and possible electrode positions are investigated. Using the proposed system, an accuracy of 85% for two commands was achieved based on the T3–T5 and T4–T6 electrode positions using only one speaker. SSAEP is a promising BCI modality for mitigating the problem of eye fatigue that often occurs during the use of SSVEP ‐based BCI systems. However, SSAEP ‐based BCI systems suffer from low accuracy. To increase accuracy, we propose a new enhanced SSAEP training method. The training process was enhanced by instructing users to control their attention levels while simultaneously detecting an auditory stimulus frequency. Furthermore, we propose a corresponding single‐frequency, multi‐command BCI paradigm for the proposed training method. With the proposed paradigm, four commands can be detected using only one auditory stimulus frequency. The proposed training system yielded an accuracy of ∼81% compared to 66% for sessions performed without the proposed training method. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

11.
We have developed a novel approach using source analysis for classifying motor imagery tasks. Two-equivalent-dipoles analysis was proposed to aid classification of motor imagery tasks for brain-computer interface (BCI) applications. By solving the electroencephalography (EEG) inverse problem of single trial data, it is found that the source analysis approach can aid classification of motor imagination of left- or right-hand movement without training. In four human subjects, an averaged accuracy of classification of 80% was achieved. The present study suggests the merits and feasibility of applying EEG inverse solutions to BCI applications from noninvasive EEG recordings.  相似文献   

12.
This study aims to propose an effective and practical paradigm for a brain-computer interface (BCI)-based 2-D virtual wheelchair control. The paradigm was based on the multi-class discrimination of spatiotemporally distinguishable phenomenon of event-related desynchronization/synchronization (ERD/ERS) in electroencephalogram signals associated with motor execution/imagery of right/left hand movement. Comparing with traditional method using ERD only, where bilateral ERDs appear during left/right hand mental tasks, the 2-D control exhibited high accuracy within a short time, as incorporating ERS into the paradigm hypothetically enhanced the spatiotemoral feature contrast of ERS versus ERD. We also expected users to experience ease of control by including a noncontrol state. In this study, the control command was sent discretely whereas the virtual wheelchair was moving continuously. We tested five healthy subjects in a single visit with two sessions, i.e., motor execution and motor imagery. Each session included a 20 min calibration and two sets of games that were less than 30 min. Average target hit rate was as high as 98.4% with motor imagery. Every subject achieved 100% hit rate in the second set of wheelchair control games. The average time to hit a target 10 m away was about 59 s, with 39 s for the best set. The superior control performance in subjects without intensive BCI training suggested a practical wheelchair control paradigm for BCI users.  相似文献   

13.
脑-机接口系统(brain-computer interface,BCI)是一种将大脑活动信息直接转换为人工输出的系统,允许用户通过思维 活动直接控制外部设备。 脑电图技术(electroencephalogram,EEG)可以实时获取大脑活动产生的神经生理电信息,具有无创、低 廉、高时间分辨率等优点,是 BCI 获取大脑活动信息的主流方式之一。 脑电 BCI 系统具有脑电信号采集、处理和输出结果的功 能,能够诱发特征脑电,并控制外部设备,在康复、医疗诊断和神经科学研究等领域具有巨大的应用价值。 随着脑电 BCI 系统应 用需求不断增加,确保其快速高效地部署和应用的技术越来越重要。 结合近些年脑电 BCI 系统研究和应用,综合论述目前用于 开发脑电采集和编解码的硬件和软件平台的技术,分析归纳其当前现状与未来趋势,以促进开发脑电 BCI 系统软硬件平台的有 效发展。  相似文献   

14.
System calibration and user training are essential for operating motor imagery based brain-computer interface (BCI) systems. These steps are often unintuitive and tedious for the user, and do not necessarily lead to a satisfactory level of control. We present an Adaptive BCI framework that provides feedback after only minutes of autocalibration in a two-class BCI setup. During operation, the system recurrently reselects only one out of six predefined logarithmic bandpower features (10-13 and 16-24 Hz from Laplacian derivations over C3, Cz, and C4), specifically, the feature that exhibits maximum discriminability. The system then retrains a linear discriminant analysis classifier on all available data and updates the online paradigm with the new model. Every retraining step is preceded by an online outlier rejection. Operating the system requires no engineering knowledge other than connecting the user and starting the system. In a supporting study, ten out of twelve novice users reached a criterion level of above 70% accuracy in one to three sessions (10-80 min online time) of training, with a median accuracy of 80.2 ± 11.3% in the last session. We consider the presented system a positive first step towards fully autocalibrating motor imagery BCIs.  相似文献   

15.
The step away from a synchronized or cue-based brain-computer interface (BCI) and from laboratory conditions towards real world applications is very important and crucial in BCI research. This work shows that ten naive subjects can be trained in a synchronous paradigm within three sessions to navigate freely through a virtual apartment, whereby at every junction the subjects could decide by their own, how they wanted to explore the virtual environment (VE). This virtual apartment was designed similar to a real world application, with a goal-oriented task, a high mental workload, and a variable decision period for the subject. All subjects were able to perform long and stable motor imagery over a minimum time of 2 s. Using only three electroencephalogram (EEG) channels to analyze these imaginations, we were able to convert them into navigation commands. Additionally, it could be demonstrated that motivation is a very crucial factor in BCI research; motivated subjects perform much better than unmotivated ones.  相似文献   

16.
The step away from a synchronized or cue-based brain-computer interface (BCI) and from laboratory conditions towards real world applications is very important and crucial in BCI research. This work shows that ten naive subjects can be trained in a synchronous paradigm within three sessions to navigate freely through a virtual apartment, whereby at every junction the subjects could decide by their own, how they wanted to explore the virtual environment (VE). This virtual apartment was designed similar to a real world application, with a goal-oriented task, a high mental workload, and a variable decision period for the subject. All subjects were able to perform long and stable motor imagery over a minimum time of 2 s. Using only three electroencephalogram (EEG) channels to analyze these imaginations, we were able to convert them into navigation commands. Additionally, it could be demonstrated that motivation is a very crucial factor in BCI research; motivated subjects perform much better than unmotivated ones.  相似文献   

17.
The opening of a communication channel between brain and computer [brain-computer interface (BCI)] is possible by using changes in electroencephalogram (EEG) power spectra related to the imagination of movements. In this paper, we present results obtained by recording EEG during an upper limb motor imagery task in a total of 18 subjects by using low-resolution surface Laplacian, different linear and quadratic classifiers, as well as a variable number of scalp electrodes, from 2 to 26. The results (variable correct classification rate of mental imagery between 75% and 95%) suggest that it is possible to recognize quite reliably ongoing mental movement imagery for BCI applications.  相似文献   

18.
Over the last 15 years, the Graz Brain-Computer Interface (BCI) has been developed and all components such as feature extraction and classification, mode of operation, mental strategy, and type of feedback have been investigated. Recent projects deal with the development of asynchronous BCIs, the presentation of feedback and applications for communication and control.  相似文献   

19.
One of the critical issues in brain-computer interface (BCI) research is how to translate a person's intention into brain signals for controlling computer programs. The motor system is currently the primary focus, where signals are obtained during imagined motor responses. However, cognitive brain systems are also attractive candidates, in that they may be more amenable to conscious control, yielding better regulation of magnitude and duration of localized brain activity. We report on a proof of principle study for the potential use of a higher cognitive system for BCI, namely the working memory (WM) system. We show that mental calculation reliably activates the WM network as measured with functional magnetic resonance imaging (fMRI). Moreover, activity in the dorsolateral prefrontal cortex (DLPFC) indicates that this region is active for the duration of mental processing. This supports the notion that DLPFC can be activated, and remains active, at will. Further confirmation is obtained from a patient with an implanted electrode grid for diagnostic purposes, in that gamma power within DLPFC increases during mental calculation and remains elevated for the duration thereof. These results indicate that cortical regions involved in higher cognitive functions may serve as a readily self-controllable input for BCI applications. It also shows that fMRI is an effective tool for identifying function-specific foci in individual subjects for subsequent placement of cortical electrodes. The fact that electrocorticographic (ECoG) signal confirmed the functional localization of fMRI provides a strong argument for incorporating fMRI in BCI research.  相似文献   

20.
Graz-BCI: state of the art and clinical applications   总被引:10,自引:0,他引:10  
The Graz-brain-computer interface (BCI) is a cue-based system using the imagery of motor action as the appropriate mental task. Relevant clinical applications of BCI-based systems for control of a virtual keyboard device and operations of a hand orthosis are reported. Additionally, it is demonstrated how information transfer rates of 17 b/min can be acquired by real time classification of oscillatory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号