首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G-protein-coupled receptors demonstrate differing trafficking itineraries in polarized Madin-Darby canine kidney (MDCK II) cells. The alpha2A adrenergic receptor (alpha2AAR) is directly delivered to the basolateral subdomain; the A1 adenosine receptor (A1AdoR) is apically enriched in its targeting; and the alpha2BAR subtype is randomly delivered to both domains but selectively retained basolaterally (Keefer, J. R., and Limbird, L. E. (1993) J. Biol. Chem. 268, 11340-11347; Saunders, C., Keefer, J. R., Kennedy, A. P., Wells, J. N., and Limbird, L. E. (1996) J. Biol. Chem. 271, 995-1002; Wozniak, M., and Limbird, L. E. (1996) J. Biol. Chem. 271, 5017-5024). The present studies explore the role of the polarized cytoskeleton in localization of G-protein-coupled receptors in MDCK II cells. Nocodazole or colchicine, which disrupt microtubules, did not perturb lateral localization of alpha2AR subtypes but led to a relocalization the A1AdoR to the basolateral surface, revealed by immunocytochemical and metabolic labeling strategies. Conversely, the apical component of the random delivery of alpha2BAR was not affected by these agents, suggesting microtubule-dependent and -independent apical targeting mechanisms for G-protein-coupled receptors in polarized cells. Apparent rerouting of the apically targeted A1AdoR was selective for microtubule-disrupting agents, since cytochalasin D, which disrupts actin polymerization, did not alter A1AdoR or alpha2BAR localization or targeting. These data suggest that multiple apical targeting mechanisms exist for G-protein-coupled receptors and that microtubule-disrupting agents serve as tools to probe their different trafficking mechanisms.  相似文献   

2.
Salmon calcitonin (5 micrograms/kg body wt) was administered in an elasmobranch, Dasyatis akajei, to investigate the effects upon plasma calcium and inorganic phosphate. The hormone produced hypocalcemia and hyperphosphatemia in the stingray. It is concluded that calcitonin may have a role in calcium homeostasis by a mechanism different from that on bones.  相似文献   

3.
We constructed a double mutant version of the alpha subunit of Go that was regulated by xanthine nucleotides instead of guanine nucleotides (GoalphaX). We investigated the interaction between GoalphaX and G protein-coupled receptors in vitro. First, we found that the activated m2 muscarinic cholinergic receptor (MAChR) could facilitate the exchange of XTPgammaS for XDP in the GoalphaXbetagamma heterotrimer. Second, the GoalphaXbetagamma complex was able to induce the high affinity ligand-binding state in the N-formyl peptide receptor (NFPR). These experiments demonstrated that GoalphaX was able to interact effectively with G protein-coupled receptors. Third, we found that the empty form of GoalphaX, lacking a bound nucleotide and betagamma, formed a stable complex with the m2 muscarinic cholingeric receptor associated with the plasma membrane. Finally, we investigated the interaction of GoalphaX with receptor in COS-7 cells. The empty form of GoalphaX bound tightly to the receptor and was not activated because XTP was not available intracellularly. We tested the ability of GoalphaX to inhibit the activities of several different G protein-coupled receptors in transfected COS-7 cells and found that GoalphaX specifically inhibited Go-coupled receptors. Thus the modified G proteins may act as dominant-negative mutants to trap and inactivate specific subsets of receptors.  相似文献   

4.
Current methods for comparative analyses of protein sequences are 1D-alignments of amino acid sequences based on the maximization of amino acid identity (homology) and the prediction of secondary structure elements. This method has a major drawback once the amino acid identity drops below 20-25%, since maximization of a homology score does not take into account any structural information. A new technique called Hydrophobic Cluster Analysis (HCA) has been developed by Lemesle-Varloot et al. (Biochimie 72, 555-574), 1990). This consists of comparing several sequences simultaneously and combining homology detection with secondary structure analysis. HCA is primarily based on the detection and comparison of structural segments constituting the hydrophobic core of globular protein domains, with or without transmembrane domains. We have applied HCA to the analysis of different families of G-protein coupled receptors, such as catecholamine receptors as well as peptide hormone receptors. Utilizing HCA the thrombin receptor, a new and as yet unique member of the family of G-protein coupled receptors, can be clearly classified as being closely related to the family of neuropeptide receptors rather than to the catecholamine receptors for which the shape of the hydrophobic clusters and the length of their third cytoplasmic loop are very different. Furthermore, the potential of HCA to predict relationships between new putative and already characterized members of this family of receptors will be presented.  相似文献   

5.
The gamma-aminobutyric acid transporter (GAT-1) isoform of the gamma-aminobutyric acid and the betaine (BGT) transporters exhibit distinct apical and basolateral distributions when introduced into Madin-Darby canine kidney cells (Pietrini, G., Suh, Y. J., Edelman, L., Rudnick, G., and Caplan, M. J. (1994) J. Biol. Chem. 269, 4668-4674). We have investigated the presence of sorting signals in their COOH-terminal cytosolic domains by expression in Madin-Darby canine kidney cells of mutated and chimeric transporters. Whereas truncated GAT-1 (DeltaC-GAT) maintained the original functional activity and apical localization, either the removal (DeltaC-myc BGT) or the substitution (BGS chimera) of the cytosolic tail of BGT generated proteins that accumulated in the endoplasmic reticulum. Moreover, we have found that the cytosolic tail of BGT redirected apical proteins, the polytopic GAT-1 (GBS chimera) and the monotopic human nerve growth factor receptor, to the basolateral surface. These results suggest the presence of basolateral sorting information in the cytosolic tail of BGT. We have further shown that information necessary for the exit of BGT from the endoplasmic reticulum and for the basolateral localization of the GBS chimera is contained in a short segment, rich in basic residues, within the cytosolic tail of BGT.  相似文献   

6.
The receptors for LH, FSH, and TSH belong to the large G protein-coupled, seven-transmembrane (TM) protein family and are unique in having a large N-terminal extracellular (ecto-) domain containing leucine-rich repeats important for interaction with the glycoprotein ligands. We have identified two new leucine-rich repeat-containing, G protein-coupled receptors and named them as LGR4 and LGR5, respectively. The ectodomains of both receptors contain 17 leucine-rich repeats together with N- and C-terminal flanking cysteine-rich sequences, compared with 9 repeats found in known glycoprotein hormone receptors. The leucine-rich repeats in LGR4 and LGR5 are arrays of 24 amino acids showing similarity to repeats found in the acid labile subunit of the insulin-like growth factor (IGF)/IGF binding protein complexes as well as slit, decorin, and Toll proteins. The TM region and the junction between ectodomain and TM 1 are highly conserved in LGR4, LGR5, and seven other LGRs from sea anemone, fly, nematode, mollusk, and mammal, suggesting their common evolutionary origin. In contrast to the restricted tissue expression of gonadotropin and TSH receptors in gonads and thyroid, respectively, LGR4 is expressed in diverse tissues including ovary, testis, adrenal, placenta, thymus, spinal cord, and thyroid, whereas LGR5 is found in muscle, placenta, spinal cord, and brain. Hybridization analysis of genomic DNA indicated that LGR4 and LGR5 genes are conserved in mammals. Comparison of overall amino acid sequences indicated that LGR4 and LGR5 are closely related to each other but diverge, during evolution, from the homologous receptor found in snail and the mammalian glycoprotein hormone receptors. The identification and characterization of new members of the LGR subfamily of receptor genes not only allow future isolation of their ligands and understanding of their physiological roles but also reveal the evolutionary relationship of G protein-coupled receptors with leucine-rich repeats.  相似文献   

7.
8.
The alpha-factor receptor of the yeast Saccharomyces cerevisiae is a member of the superfamily of G protein-coupled receptors that mediate signal transduction in response to sensory and chemical stimuli. All members of this superfamily contain seven predicted transmembrane segments. We have created a series of genes encoding alpha-factor receptors with amino- or carboxyl-terminal truncations at each of the loop regions connecting transmembrane segments. Split receptors containing a discontinuity in the peptide backbone were synthesized by coexpressing pairs of truncated receptor fragments in yeast. Complementary pairs of fragments split at sites within each of the cytoplasmic and extracellular loops were capable of assembling and transducing a signal in response to alpha-factor binding. One pair of noncomplementary fragments containing a deletion in the second intracellular loop of the receptor also yielded a functional receptor. Coexpression of certain combinations of overlapping fragments containing supernumerary transmembrane segments also led to formation of functional receptors, apparently because of proteolytic trimming of overlapping regions. Coexpression of truncated receptor fragments with full-length receptors had no effect on signaling by the full-length receptors. These results demonstrate the following: (1) Correct folding of the alpha-factor receptor does not require a covalent connection between any pair of transmembrane segments that are adjacent in the sequence. (2) Most of the second intracellular loop of the receptor is not required for function. (3) The structure of the receptor cannot, in most cases, tolerate the presence of extra transmembrane segments. (4) None of the truncated fragments of the alpha-factor receptor can efficiently oligomerize with normal receptors in such a way as to inhibit receptor function.  相似文献   

9.
SP Watson 《Canadian Metallurgical Quarterly》1995,15(1-4):5-17, discussion 19-21
Receptors that mediate their effects through G proteins are predicted to have a seven transmembrane domain architecture. The last few years have seen a remarkable increase in the cloning of members of this superfamily leading to the identification of many more receptors than previously thought to exist on the basis of differences in agonist and antagonist specificities. This has important implications for nomenclature and classification, especially in view of the difficulty in relating receptors identified through cloning techniques to endogenously expressed receptors. Receptor cloning has also identified important differences in receptors between species raising the question as to whether these should be considered as species homologues or distinct subtypes. It is also becoming increasingly apparent that the pharmacology of this superfamily of receptors is influenced by the nature of the G protein present in the host cell and by alternative splicing of the receptor. The rapid pace of developments in this area necessitate the need for a regular publication summarizing recent developments. In the future, the cloning of G protein-coupled receptors will enable rationalization of the naming of individual receptor subtypes and identification of their interrelationships.  相似文献   

10.
11.
12.
13.
Carbachol and 5'-(N-ethylcarboxamido)-adenosine (NECA), stimulants of G protein-coupled receptors, induce MAP kinase activation in the muscarinic ml receptor-transfected mast cell line, RBL-2H3 (ml) cells. The phospholipase C inhibitor neomycin and the phosphatidate phosphohydrolase inhibitor propranolol augmented MAP kinase activation induced by carbachol and NECA without affecting the antigen-induced MAP kinase activation. Furthermore, the duration of MAP kinase activation induced by carbachol or NECA was also prolonged by neomycin and propranolol. The specific protein kinase C inhibitor Ro 31-8425 enhanced the carbachol- or NECA-induced MAP kinase activation. These findings suggest that the MAP kinase activation mediated by the G protein-coupled receptors is negatively regulated by diacylglycerol and activated protein kinase C(s).  相似文献   

14.
The G protein-coupled receptor kinase GRK6 undergoes posttranslational modification by palmitoylation. Palmitoylated GRK6 is associated with the membrane, while nonpalmitoylated GRK6 remains cytosolic. We have separated palmitoylated from nonpalmitoylated GRK6 to assess their relative kinase activity. Palmitoylated GRK6 is 10-fold more active at phosphorylating beta2-adrenergic receptor than nonpalmitoylated wild-type GRK6 or a nonpalmitoylatable mutant GRK6. A nonpalmitoylatable mutant GRK6 which has been further mutated to undergo posttranslational geranylgeranylation is also more active, recovering most of the activity of the palmitoylated enzyme. This activity increase by lipid modification is expected, as the lipid helps GRK6 localize to cellular membranes where its receptor substrates are found. However, when assayed using a soluble protein (casein) as a substrate, both palmitoylated and prenylated GRK6 display significantly higher activity than nonpalmitoylated wild-type or nonpalmitoylatable mutant GRK6 kinases. This increased activity is not altered by addition of exogenous palmitate or phosphatidycholine vesicles, arguing that it is not due to direct activation of GRK6 by binding palmitate, nor to nonspecific association of the GRK6 with casein. Further, chemical depalmitoylation reduces the casein phosphorylation activity of the palmitoylated, but not prenylated, GRK6 kinase. Thus, palmitoylation of GRK6 appears to play a dual role in increasing the activity of GRK6: it increases the hydrophobicity and membrane association of the GRK6 protein, which helps bring the GRK6 to its membrane-bound substrates, and it increases the kinase catalytic activity of GRK6.  相似文献   

15.
We previously reported that human cytomegalovirus (CMV) glycoprotein B (gB) is vectorially transported to apical membranes of CMV-infected polarized human retinal pigment epithelial cells propagated on permeable filter supports and that virions egress predominantly from the apical membrane domain. In the present study, we investigated whether gB itself contains autonomous information for apical transport by expressing the molecule in stably transfected Madine-Darby canine kidney (MDCK) cells grown on permeable filter supports. Laser scanning confocal immunofluorescence microscopy and domain-selective biotinylation of surface membrane domains showed that CMV gB was transported to apical membranes independently of other envelope glycoproteins and that it colocalized with proteins in transport vesicles of the biosynthetic and endocytic pathways. Determinants for trafficking to apical membranes were located by evaluating the targeting of gB derivatives with deletions in the lumen, transmembrane (TM) anchor, and carboxyl terminus. Derivative gB(Delta717-747), with an internal deletion in the luminal juxtamembrane sequence that preserved the N- and O-glycosylation sites, retained vectorial transport to apical membranes. In contrast, derivatives that lacked the TM anchor and cytosolic domain (gBDelta646-906) or the TM anchor alone (gBDelta751-771) underwent considerable basolateral targeting. Likewise, derivatives lacking the entire cytosolic domain (gBDelta772-906) or the last 73 amino acids (gBDelta834-906) showed disrupted apical transport. Site-specific mutations that deleted or altered the cluster of acidic residues with a casein kinase II phosphorylation site at the extreme carboxyl terminus, which can serve as an internalization signal, caused partial missorting of gB to basolateral membranes. Our studies indicate that CMV gB contains autonomous information for apical targeting in luminal, TM anchor, and cytosolic domain sequences, forming distinct structural elements that cooperate in vectorial transport in polarized epithelial cells.  相似文献   

16.
Coronaviruses are assembled by budding into a pre-Golgi compartment from which they are transported along the secretory pathway to leave the cell. In cultured epithelial cells, they are released in a polarized fashion; depending on the virus and cell type, they are sorted preferentially either to the apical domain or to the basolateral plasma membrane domain. In this study, we investigated the role of the coronavirus spike protein, because of its prominent position in the virion the prime sorting candidate, in the directionality of virus release. Three independent approaches were taken. (i) The inhibition of N glycosylation by tunicamycin resulted in the synthesis of spikeless virions. The absence of spikes, however, did not influence the polarity in the release of virions. Thus, murine hepatitis virus strain A59 (MHV-A59) was still secreted from the basolateral membranes of mTAL and LMR cells and from the apical sides of MDCK(MHVR) cells, whereas transmissible gastroenteritis virus (TGEV) was still released from the apical surfaces of LMR cells. (ii) Spikeless virions were also studied by using the MHV-A59 temperature-sensitive mutant Albany 18. When these virions were produced in infected LMR and MDCK(MHVR) cells at the nonpermissive temperature, they were again preferentially released from basolateral and apical membranes, respectively. (iii) We recently demonstrated that coronavirus-like particles resembling normal virions were assembled and released when the envelope proteins M and E were coexpressed in cells (H. Vennema, G.-J. Godeke, J. W. A. Rossen, W. F. Voorhout, M. C. Horzinek, D.-J. E. Opstelten, and P. J. M. Rottier, EMBO J. 15:2020-2028, 1996). The spikeless particles produced in mTAL cells by using recombinant Semliki Forest viruses to express these two genes of MHV-A59 were specifically released from basolateral membranes, i.e., with the same polarity as that of wild-type MHV-A59. Our results thus consistently demonstrate that the spike protein is not involved in the directional sorting of coronaviruses in epithelial cells. In addition, our observations with tunicamycin show that contrary to the results with some secretory proteins, the N-linked oligosaccharides present on the viral M proteins of coronaviruses such as TGEV also play no role in viral sorting. The implications of these conclusions are discussed.  相似文献   

17.
OBJECTIVE: To determine whether emergency rigid bronchoscopic intervention, including Nd-YAG laser resection or stenting, immediately affected the need for continued mechanical ventilation or intensive care level of support in critically ill patients with acute respiratory failure from malignant or benign central airways obstruction. DESIGN: Retrospective review of medical records of all patients with acute respiratory failure and malignant or benign tracheobronchial obstruction necessitating intubation, mechanical ventilation, or hospitalization in the ICU prior to referral for therapeutic bronchoscopy. SETTING: University of California San Diego, a tertiary care institution specialized in airway management. PATIENTS: Medical records of 32 patients with malignant or benign central airways obstruction requiring admission to the ICU prior to rigid bronchoscopic intervention between January 1994 and April 1996. INTERVENTIONS: Emergent rigid bronchoscopy with dilatation, Nd-YAG laser resection, or silicone stent insertion performed in the operating room under general anesthesia. RESULTS: Thirty-two patients with central airways obstruction requiring emergent hospitalization in the ICU were referred for therapeutic rigid bronchoscopy. Airway strictures were caused by benign disease in 18 patients, and by primary bronchogenic lung cancer in 14. Of the 19 patients who were mechanically ventilated, bronchoscopic intervention allowed immediate discontinuation of mechanical ventilation in 10 (52.6%). Twenty-five patients had indwelling artificial airways (12 endotracheal tubes, 13 tracheotomy tubes). Two, however, were considered tracheotomy-dependent because of neuromuscular disease. Of the remaining 23 patients, immediate extubation or decannulation was possible in seven (30.4%). Of seven patients with no indwelling airway, five (71.4%) were immediately transferred to a lower level of care after intervention. Of the 32 total patients, 20 (62.5%) were immediately transferred to a lower level of care immediately after intervention. CONCLUSIONS: Emergency laser resection or stent insertion can favorably affect health-care utilization in patients with acute respiratory distress from central airways obstruction. Treatment may be lifesaving and allows successful withdrawal from mechanical ventilation, hospitalization in a lower level of care environment, relief of symptoms, and extended survival in critically ill patients. In patients with regionally advanced cancer, the palliative nature of this procedure postpones death by respiratory distress and may prompt consideration for institution of conservative comfort measures to reduce patient suffering.  相似文献   

18.
Infection of eukaryotic cells by intracellular pathogens such as chlamydia requires attachment to the host cell surface. Chlamydia are thought to attach to the tips of microvilli in confluent monolayers of polarized cells. In vitro evidence obtained from migrating epithelial cells suggested that during healing the route of pathogen uptake might be different from that in intact epithelia. The small size of infectious chlamydial elementary bodies (approximately 0.3 microm in diameter) has made it difficult, however, to analyze the early stages of pathogen-host cell interaction in living cells by conventional microscopy. Contrast-enhanced video microscopy was therefore used to examine the earliest events of host-pathogen interaction and test the hypothesis that chlamydial uptake into the healing epithelia can involve translocation over the host cell surface. Observations made in this way were validated by scanning and immunofluorescence microscopy. These studies revealed two fates for chlamydiae taken onto the lamellipodial surface: 1) some chlamydiae were moved in a random fashion on the cell surface or were detached into the culture medium, whereas 2) other chlamydiae were translocated across the lamellipodium in a highly directed manner toward the microvillous perinuclear region. After internalization, these latter chlamydiae were found within intracellular inclusions, which demonstrated that this route of attachment and location of uptake resulted in productive growth.  相似文献   

19.
Platelet-derived growth factor AB (PDGF-AB) has to be permanently present in the culture medium to achieve full proliferation (>90%) of AKR-2B fibroblasts. Upon removal after 1 h incubation time, only a small number of cells (<20%) entered the cell cycle. Concomitantly there was no increase in RNA- and protein-synthesis. The PDGF-receptor autophosphorylation reached a maximum after 30 min incubation with PDGF-AB. Tyrosine phosphorylation was no longer detectable after 2-4 h. The clustering of receptors into coated pits, analyzed by indirect immunofluorescence using a specific antibody against PDGF-beta-receptor, showed in contrast to autophosphorylation a biphasic kinetic. A first maximum was reached after 30 min, followed by a complete disappearance of coated pits, which regenerated in a second phase after 3 h and were long lasting. If PDGF-AB was removed after 1 h, the second phase was obliterated. The involvement of two different signalling pathways in these two phases was investigated in detail: (1) The ras-raf-MAP-kinase pathway and (2) the PI-3-kinase/p70(S6)-kinase pathway. PDGF-AB addition caused a fast (10 min) activation of MAP-kinase, which returned to background level after 1 h without any further activation later on. In contrast PDGF-AB led to a rapid (15-30 min) activation of the p70(S6)-kinase that persisted for 8-12 h just prior to the entry of the cells into S-phase. If PDGF-AB was removed after 1 h, the activation of this kinase ceased 3 h later. PDGF-AA, which is unable to promote division of AKR-2B cells, induced only a shortlasting p70(S6)-kinase activation. These observations add further evidence for the involvement of the p70(S6)-kinase pathway in the proliferation control of AKR-2B fibroblasts in the late G1 phase (4-8 h after growth factor addition). On the other hand, if the p70(S6)-kinase activation was prevented by the addition of 10 nM rapamycin, the cell division was not inhibited but only delayed by 4 h. Similar kinetics were observed when the PI-3-kinase was inhibited by 400 nM wortmannin. It is suggested that a regulatory element exists upstream of the p70(S6)-kinase and the PI-3-kinase. This regulatory element should be responsible for the transmission of late signals required for the progression through the cell cycle. This element is not involved in the immediate responses after PDGF-AB addition but must be stimulated within a second later phase of PDGF activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号