首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biomineralization capacity of the photosynthetic marine diatom Nitzschia frustulum was harnessed to fabricate Si-Ge oxide nanocomposite materials. Germanium was incorporated into the diatom cell by a two-stage cultivation process. In stage 1, the N. frustulum cell suspension was grown up to cell density of 3 x 10(6) cells/mL in 0.35 mM silicic acid within a bubble-column photobioreactor. In stage 2, when all of the soluble silicon was consumed, 0.10 mM Ge(OH)4 or a mixture of 0.020 mM Ge(OH)4 and 0.25 mM Si(OH)4 were added to Si-starved cells. The cells assimilated soluble germanium by a surge uptake mechanism. The cell mass was thermally annealed in air at 800 degrees C for 6 h to oxidize carbonaceous materials. The thermally annealed cell biomass was characterized by TEM-EDS, FT-IR, and XRD. These measurements confirmed the formation nanostructured Ge-Si oxides composed of CaSiO3 and Ca3GeO5.  相似文献   

2.
A key to the development of nanotechnology will be the ability to make complex nanoscaled three-dimensional structures at low cost and in large numbers. The wide variety of structures in the silicified cell walls of diatoms offers a promising natural source of such materials. Diatom silica can be converted into other materials, with maintenance of detailed morphology. To facilitate the use of diatoms in nanotechnology, specific manipulation of the structure in vivo will be desirable. This article explores the possibilities of manipulating diatom silica structure, by nongenetic and genetic means. Nongenetic influences that affect silica structure include changes in environmental conditions and life cycle stages and the presence or absence of particular compounds. The genetically based natural variation in structure in different diatom species indicates that genetic manipulation is possible. To achieve this, however, several goals must be met. The first is to identify cell wall synthesis (CWS) genes involved in structure formation. The recently completed genome sequence of Thalassiosira pseudonana opens the door for genomic and proteomic approaches to accomplish this. An important method to determine the function of CWS genes will be to modify gene sequences or expression and monitor the effect on structure. Performing gene modifications is straightforward, and modified genes can be introduced into diatoms, but the current inability to replace native diatom genes with modified copies could be a problem. However, there are feasible approaches yet to be applied to achieve this goal. It is very likely that continued development and application of molecular genetic techniques will enable us to specifically modify diatom silicified structures and provide a detailed understanding of the underlying mechanism of their formation.  相似文献   

3.
We demonstrated chemical etching of a marine diatom shell with 1 N NaOH for controlling the pore size of nanoporous structures of the shell under various conditions. Scanning electron microscopy (SEM) images clearly revealed that the pore size of the diatom shells was regulated in the case of etching at 25 degrees C. In contrast, fluctuations in the etched structures was relatively high even during short periods degradation at 40, 60, and 90 degrees C; therefore, controlled nanoporous structures could not be fabricated. This is the first example of artificial modification of natural diatom shells at the nanoscale although diatom shells have been widely used in industry. In addition, a backbone-like structure was observed during the etching process. The structure was similar to the intermediate structure observed during the primitive stage of the diatom cell growth. Probably, this information is valuable for studying the mechanism of nanoporous structures of diatoms.  相似文献   

4.
ZnO nanostructures with a size ranging from 20 to 100 nm were successfully deposited on (1 0 0)-Si substrates at different temperatures (500–800 °C) using MOCVD. It could be confirmed that the size of ZnO nanostructures decreased with increasing growth temperature. From photoluminescence (PL) studies it was found, that intensive band-edge PL of ZnO nanostructures consists of emission lines with maxima at 368.6 nm, 370.1 nm, 373.7 nm, 383.9 nm, 391.7 nm, 400.7 nm and 412 nm. These lines can be dedicated to free excitons and impurity donor-bound excitons, where hydrogen acts as donor impurity with an activation energy of about 65 meV. A UV shift of the band-edge PL line with increasing growth temperature of ZnO nanostructures was observed as a result of the quantum confinement effect. The results suggest that an increase of growth temperature leads to increased band-edge PL intensity. Moreover, the ratio of band-edge PL intensity to green- (red-) band intensity also increases, indicating better crystalline quality of ZnO nanostructures with increasing growth temperature.  相似文献   

5.
Diatom silica microparticles were chemically modified with self-assembled monolayers of 3-mercaptopropyl-trimethoxysilane (MPTMS), 3-aminopropyl-trimethoxysilane (APTES) and n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPTMS), and their application for the adsorption of mercury ions (Hg(II)) is demonstrated. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy analyses revealed that the functional groups (–SH or –NH2) were successfully grafted onto the diatom silica surface. The kinetics and efficiency of Hg(II) adsorption were markedly improved by the chemical functionalization of diatom microparticles. The relationship among the type of functional groups, pH and adsorption efficiency of mercury ions was established. The Hg(II) adsorption reached equilibrium within 60 min with maximum adsorption capacities of 185.2, 131.7 and 169.5 mg g−1 for particles functionalized with MPTMS, APTES and AEAPTMS, respectively. The adsorption behavior followed a pseudo-second-order reaction model and Langmuirian isotherm. These results show that mercapto- or amino-functionalized diatom microparticles are promising natural, cost-effective and environmentally benign adsorbents suitable for the removal of mercury ions from aqueous solutions.  相似文献   

6.
Abstract

Diatom silica microparticles were chemically modified with self-assembled monolayers of 3-mercaptopropyl-trimethoxysilane (MPTMS), 3-aminopropyl-trimethoxysilane (APTES) and n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPTMS), and their application for the adsorption of mercury ions (Hg(II)) is demonstrated. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy analyses revealed that the functional groups (–SH or –NH2) were successfully grafted onto the diatom silica surface. The kinetics and efficiency of Hg(II) adsorption were markedly improved by the chemical functionalization of diatom microparticles. The relationship among the type of functional groups, pH and adsorption efficiency of mercury ions was established. The Hg(II) adsorption reached equilibrium within 60 min with maximum adsorption capacities of 185.2, 131.7 and 169.5 mg g?1 for particles functionalized with MPTMS, APTES and AEAPTMS, respectively. The adsorption behavior followed a pseudo-second-order reaction model and Langmuirian isotherm. These results show that mercapto- or amino-functionalized diatom microparticles are promising natural, cost-effective and environmentally benign adsorbents suitable for the removal of mercury ions from aqueous solutions.  相似文献   

7.
In this study, the growth of copper on porous diatom silica by electroless deposition method has been demonstrated for the first time. Raman peaks of copper (145, 213, and 640 cm?1) appeared in the copper-coated, Amphora sp. and Skeletonema sp. diatom samples, confirming the successful deposition of copper. Scanning electron microscopy (SEM) indicated the presence of copper on the diatom silica surface. The 3D intricate structure of diatom was still evident by optical and scanning electron microscopy analyses when the diatom samples were immersed in the copper bath for only 5 hours. Incubating the diatom samples in the copper bath for 24 h produced a dense coating on the diatom surface and covered the intricate 3D structure of the diatom silica. These results present possibilities of the fabrication of hierarchically organized copper with 3D diatom replica structures.  相似文献   

8.
The simultaneous coupling and reduction of graphene oxide (GO) with diatom silica (Amphora sp., Navicula ramossisira and Skeletonema sp.) were demonstrated in this work. Binding of GO with diatom silica via direct esterification reaction at 100 °C was observed as well as the reduction of GO. The Raman spectra of GO-diatom silica revealed the typical peaks for reduced graphene oxide at 1350 cm?1 (D band) and 1585 cm?1 (G band). Infrared spectroscopy also showed the presence of a unique peak at 1260–1300 cm?1 indicative of Si–O–C=O bond formation. This confirms the successful functionalization of GO with silica. Scanning electron microscopy showed the presence of GO on the diatom. For the pennate diatoms, Amphora sp. and N. ramossisira, their pores were closed demonstrating that GO was able to cover the surface of the diatom via the Si–O–C bond formation. For the centric diatom, Skeletonema sp., GO was found to be on its rib cage-like body structure and on its centric top. Electrochemical measurements by cyclic voltammetry using a redox probe, K3[Fe(CN)6], showed that GO-Amphora and GO-Navicula had more surface negative charge compared with bare GO or bare diatom silica. Furthermore, they demonstrated similar surface charge characteristics as the chemically reduced GO (by hydrazine hydrate). This implies that the composite (reduced GO-diatom) can possibly replace chemically reduced GO (by exposure to hydrazine vapor) and it could probably function as an electrode in sensing cationic biomolecules.  相似文献   

9.
Yi J  Jang HS  Lee JS  Park WI 《Nano letters》2012,12(7):3743-3748
Biosilification is of interest due to its capability to produce a highly intricate structure under environmentally friendly conditions. Despite the considerable effort that has been devoted toward biomimetic silification, the synthesis of highly complex silica structures, as found in the structures of diatom cell walls, is still in its infancy. Here, we report the bioinspired fabrication of well-organized and symmetric silica nanostructured networks, involving phase separation and silicic acid polymerization processes, in analogy to the morphogenesis of diatom cell walls. Our approach exploits self-assembled silica spheres as a self-source of the silicic acids as well as scaffolds that, interplayed with droplets of ammonium hexafluorosilicate, direct the site-specific silification. Moreover, we have achieved multiple morphological evolutions with subtle changes in the process, which demonstrates exquisite levels of control over silica morphogenesis.  相似文献   

10.
11.
ZnO/CdS core/shell one-dimensional nanostructures were synthesized using ZnO nanorod arrays as templates, which were fabricated by a vapor transport process. CdS shells with various thicknesses were epitaxially grown on the ZnO nanorod arrays by metal organic chemical vapor deposition. Selected area electron diffraction measurement revealed that both ZnO cores and CdS shells were single crystalline growing along the c-axis. The photoluminescence properties of the ZnO/CdS core/shell nanostructures were also varied with different CdS shell thicknesses. A carrier transition process from ZnO to CdS was assumed to induce the enhancement of CdS photoluminescence.  相似文献   

12.
Diatomaceous earth (DE), naturally available silica, originated from fossilized diatoms has been explored for use in drug delivery applications as a potential substitute for synthetic silica materials. The aim of this study is to explore the influence of particle size, morphology and surface modifications of diatom silica microparticles on their drug release properties. Raw DE materials was purified and prepared to obtain high purity DE silica porous particles with different size and morphologies. Comparative scanning electron microscope and particle characterization confirmed their particle size including irregularly shaped silica particles (size 0.1–1 μm, classified as “fine”), mixed fractions (size 1–10 μm, classified as “mixture”) and pure, unbroken DE structures (size 10–15 μm, classified as “entire”). Surface modification of DE with silanes and phosphonic acids was performed using standard silanization and phosphonation process to obtain surface with hydrophilic and hydrophobic properties. Water insoluble (indomethacin) and water soluble (gentamicin) drugs were loaded in DE particles to study their drug release performances. In vitro drug release studies were performed over 1–4 weeks, to examine the impact of the particle size and hydrophilic/hydrophobic functional groups. The release studies showed a biphasic pattern, comprising an initial burst release for 6 h, followed by near-zero order sustained release. This study demonstrates the potential of silica DE particles as a natural carrier for water soluble and insoluble drugs with release controlled by their morphological and interfacial properties.  相似文献   

13.
To enhance wear behavior of resin composites, bimodal silica nanostructures including silica nanoparticles and silica nanoclusters were prepared and proposed as fillers. The silica nanoclusters, a combination of individually dispersed silica nanoparticles and their agglomerations, with size distribution of 0.07–2.70 μm, were fabricated by the coupling reaction between amino and epoxy functionalized silica nanoparticles, which were obtained by the surface modification of silica nanoparticles (~ 70 nm) using 3-aminopropyl triethoxysilane (APTES) and 3-glycidoxypropyl trimethoxysilane (GPS) as coupling agents, respectively. Silica nanoparticles and nanoclusters were then silanized with 3-methacryloxypropyl trimethoxysilane (γ-MPS) to prepare composites by mixing with bisphenol A glycerolate dimethacrylate (Bis-GMA) and tri (ethylene glycol) dimethacrylate (TEGDMA). Experimental composites with various filler compositions were prepared and their wear behaviors were assessed in this work. The results suggested that composites with increasing addition of silica nanoparticles in co-fillers possessed lower wear volume and smoother worn surface. Particularly, the composite 53:17 with the optimum weight ratio of silica nanoparticles and silica nanoclusters presented the excellent wear behavior with respect to that of the commercial Esthet-X, although the smallest wear volume was achieved by Z350 XT. The introduction of bimodal silica nanostructures as fillers might provide a new sight for the design of resin composites with significantly improved wear resistance.  相似文献   

14.
Diatom silica microparticles from natural diatomaceous earth (DE) silica have been functionalized with 3-mercaptopropyltrimethoxysilane (MPTMS) and their application for adsorption of gold (III) ions from aqueous solutions is demonstrated. Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron spectroscopy (XPS) analyses of the MPTMS modified diatom microparticles revealed that the silane layer with functional group (-SH) was successfully introduced to the diatom surface. The adsorption study of Au(III) ions using MPTMS-DE indicated that the process depends on initial gold (III) concentration and pH showing maximum adsorption capacity at pH = 3. The Au(III) adsorption kinetics results showed that the adsorption was very fast and followed a pseudo-second-order reaction model. The Langmuir model was used to provide a sound mechanistic basis for the theoretical of the adsorption equilibrium data. Gold recovery from MPTMS-DE structures was also investigated by using acidified thiourea solution and found to be high (> 95%). These results show that chemically modified DE microparticles can be used as a new, cost effective and environmentally benign adsorbent suitable for adsorption of gold metal ions from aqueous solutions.  相似文献   

15.
We present here a facile one-step method for the synthesis of silica/Au core-shell nanostructures by exploiting the potential difference of AuCl4? and Ag in aqueous as well as alkaline media. Initially, silica/Ag core-shell nanostructures were synthesised by coating Ag nanoparticles on silica core (size ~150 nm) in a two-step process (seeding and growth) and were characterised for their morphological, structural and optical behaviours. A complete coverage of silica core with Ag nanoparticles was seen from scanning electron microscope and transmission electron microscope images. The presence of resonance peaks in the optical spectrum manifests the nature of the shell (thin shell ~413 and 650 nm, thick shell ~434 nm). Galvanic replacement of silica/Ag core-shell nanostructures in chloroauric acid solution (HAuCl4) was studied in both the aqueous and alkaline medium, where an aqueous environment results into fast and effective replacement as compared to an alkaline medium, which has been confirmed from optical absorption studies. The optical studies showed that in an alkaline environment, on galvanic replacement of Ag with Au, the individual absorption peak of Ag (~414 nm) and Au (~520 nm) disappeared, whereas new absorption wavelengths in higher region (600–800 nm) of electromagnetic spectrum were observed. A detailed mechanism is proposed for the same to explain this behaviour. A range of novel new plasmonic core-shell nanomaterials can be synthesised as an intermediate of this facile one-step reaction.  相似文献   

16.
This paper reports the fabrication of micro- and macropatterns of ordered mesostructured silica on arbitrary flat and curved surfaces using a facile robot-directed aerosol printing process. Starting with a homogenous solution of soluble silica, ethanol, water, and surfactant as a self-assembling ink, a columnated stream of aerosol droplets is directed to the substrate surface. For deposition at room temperature droplet coalescence on the substrates and attendant solvent evaporation result in continuous, highly ordered mesophases. The pattern profiles are varied by changing any number of printing parameters such as material deposition rate, printing speed, and aerosol-head temperature. Increasing the aerosol temperature results in a decrease of the mesostructure ordering, since faster solvent evaporation and enhanced silica condensation at higher temperatures kinetically impede the molecular assembly process. This facile technique provides powerful control of the printed materials at both the nanoscale and microscale through chemical self-assembly and robotic engineering, respectively.  相似文献   

17.
Osteoblasts respond to mechanical signals which play a key role in the formation of bone however, after extended periods of stimulation they become desensitised. Mechanosensitivity has been shown to be restored by the introduction of resting periods between loadings. The aim of this study was to analyse the effect of rest periods on the response of osteoblast-like cells seeded on collagen-glycosaminoglycan (CG) scaffolds in a flow perfusion bioreactor up to 14 days. Short (10 s) and long (7 h) term rests were incorporated into stimulation patterns. Constructs cultured in the bioreactor had a more homogenous cell distribution albeit with lower cell numbers than the static group. Osteopontin expression was significantly higher on the rest-inserted group than on the steady flow and static control. These results indicate that the insertion of short term rests during flow improves cellular distribution and osteogenic responses on CG constructs cultured in a flow perfusion bioreactor.  相似文献   

18.

We report the synthesis of silver-integrated silica nanostructures using rice hulls and silver chloride through a facile thermal combustion process. The formation of mesoporous silica nanomatrix embedded with silver nanoparticles (SiO2:Ag 5 wt% and SiO2:Ag 10 wt%) was confirmed by XRD, FTIR, EDX, BET, and TEM analysis. Also, the obtained results from the above studies revealed that the concentration of silver ions significantly increases the particle size and number of silver nanoparticles formed in the silica matrix. The electrochemical performance was studied using silver-integrated silica nanostructures as a working electrode in KOH electrolyte. The maximum specific capacitance of SiO2:Ag 5 wt%- and SiO2:Ag 10 wt%-coated electrode was found to be 517 and 580 F/g at current density of 1 A/g. It was also found that SiO2:Ag 10 wt% electrode exhibit an excellent stability with the capacitance retention of 94% than SiO2:Ag 5 wt% (capacitance retention of 85%) after 1000 cycles at a current density of 1 A/g. These results may be attributed to the inherent characteristic of more silver nanoparticles present in the silica nanomatrix in SiO2:Ag 10 wt%. The intrinsic characteristic of rice hull-derived silica nanostructures such as high surface area and mesoporous structure along with the advantage of silver nanoparticles (conductivity) can facilitate the Faradic redox processes at electrode surface which are responsible for the supercapacitive behavior of the prepared silver-integrated silica nanostructures.

  相似文献   

19.
Chloride-induced corrosion is the main factor in determining the durability and service life of the reinforced concrete structures exposed to marine environments. Recognition of chloride diffusion phenomenon in concrete and developing a prediction model that can estimate the service life of the concrete structures subject to long-term exposure is vital for aggressive marine environments. The present study focuses on developing such a prediction model of chloride diffusion coefficient for silica fume concrete under long-term exposure to a durability site located in the southern region of Iran. All investigations are based on 16 concrete mix designs containing silica fume with variable water-to-binder ratios exposed to sea water for maximum period of 60 months. This empirical model is developed by applying regression analysis based on Fick’s second law on the experimental results and is compared with previous studies in this area. This comparison indicates that the predicted chloride diffusion coefficient level is within a ±25% error margin in the specimens. The results indicate that reducing the water-to-binder ratio and adding the silica fume to a dosage of 10% reduces the chloride diffusion coefficient in concrete. This study also confirms that the chloride diffusion coefficient increases with temperature and decreases over time.  相似文献   

20.
The spontaneous formation of nanostructured materials by molecular self-assembly of block copolymers is an active area of research, driven both by its inherent beauty and by a wealth of potential technological applications. Thin films of block copolymers have attracted increasing interest, particularly in view of possible applications in nanotechnology. Although much of the work has concentrated on block copolymers consisting of two components, the insertion of a third block greatly enlarges the structural diversity and allows incorporation of additional chemical functionality. Here we describe a highly ordered hexagonally perforated lamella structure based on an ABC triblock copolymer thin film. By suitable choice of the three blocks a versatile structure is formed. The perforated lamella can serve as a lithographic mask, it can be chemically converted into an amphiphilic structure without losing its order, and after selective removal of one of its constituents it could be used as a responsive membrane. Intriguingly, the particular choice of the blocks ensures that the structure is formed irrespective of the chemical nature of the solid substrate. The experimental results are supported by mesoscale computer simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号