共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Shuling Xu Yuntao Song Sumei Liu Kun Lu Kun Pei 《Journal of Nuclear Science and Technology》2018,55(9):979-984
Thermal-hydraulic performance is a challenging issue in helium-cooled ceramic breeder (HCCB) blanket design due to the extremely complicated working environment and the strict limits of materials temperature. The heat loads deposited on the HCCB blanket comprises of severe surface heat flux from plasma and the volumetric nuclear heat from neutron irradiation, which can be exhausted by the built-in cooling channels of the components. High pressure helium with 8 MPa, distributed from the coolant manifolds is employed as coolant in the blanket. The design and optimization of the manifolds configuration was performed to guarantee the accurate flow control of helium coolant. The flow distribution in the coolant manifolds was investigated based on the structural improvement of manifolds aiming at overall uniform mass flow rates and better flow streamline distribution without obvious vortexes. The peak temperature of different functional materials in the blanket under normal operating condition is below allowable material limits. It is found that the components in the current blanket module could be cooled effectively under the intense thermal loads due to the updated design and optimization analysis of manifolds. 相似文献
7.
8.
Sumei Liu Mingfeng Chen Mingzhun Lei Mingxuan Lu Zhongwei Wang 《Journal of Fusion Energy》2014,33(6):713-719
China Fusion Engineering Test Reactor (CFETR) is a superconducting magnet tokamak and its goal is to achieve the magnetic confinement fusion. The electromagnetic (EM) transients cause mechanical forces, which represent one of the most vital loads for tokamak vacuum vessel (VV). This paper is focused on calculational methods and results for the EM loads on the simplified but practical model of CFETR VV with respect to plasma major disruption scenarios as a reference of the design and analysis. Commercial finite element method software, ANSYS, was employed to evaluate the eddy current on the VV module with the 22.5 ° sector model for major conducting structure of the tokamak including double-walled VV, T-shape rib, and three ports. The plasma current is damping as exponential function 36 ms corresponding to the current simulating in ITER outputs, which are one of major sources of EM loads on VV components. As the results of calculating the eddy currents and EM forces, stress and deformation on CFETR VV can be obtained, which is useful for the structural design of VV. 相似文献
9.
10.
11.
12.
13.
《Fusion Engineering and Design》2014,89(7-8):1380-1385
China Fusion Engineering Test Reactor (CFETR) is an ITER-like superconducting tokamak reactor. Its major radius is 5.7 m, minor radius is 1.6 m and elongation ratio is 1.8. Its mission is to achieve 50–200 MW of fusion power, 30–50% of duty time factor, and tritium breeding ratio not less than 1.2 to ensure the self-sufficiency. As one of the breeding blanket candidates for CFETR, a water cooled breeder blanket with superheated steam is proposed and its conceptual design is being carried out. In this design, sub-cooling water at 265 °C under the pressure of 7 MPa is fed into cooling plates in breeding zone and is heated up to 285 °C with saturated steam generated, and then this steam is pre-superheated up to 310 °C in first wall (FW), final, the pre-superheated steam coming from several blankets is fed into the other one blanket to superheat again up to 517 °C. Due to low density of superheated steam, it has negligible impact on neutron absorption by coolant in FW so that the high energy neutrons entering into breeder zone moderated by water in cooling plate help enhance tritium breeding by 6Li(n,α)T reaction. Li2TiO3 pebbles and Be12Ti pebbles are chosen as tritium breeder and neutron multiplier respectively, because Li2TiO3 and Be12Ti are expected to have better chemical stability and compatibility with water in high temperature. However, Be12Ti may lead to a reduction in tritium breeding ratio (TBR). Furthermore, a spot of sintered Be plate is used to improve neutron multiplying capacity in a multi-layer structure. As one alternative option, in spite of lower TBR, Pb is taken into account to replace Be plate in viewpoint of safety. In this contribution, study on neutronics and thermal design for a water cooled breeder blanket with superheated steam is reported. 相似文献
14.
While EAST experiment was running in 2012, the project of the China fusion engineering test reactor (CFETR) concept design was started. This ITER-like tokamak system will be the second full superconducting tokamak in China based on EAST technology. In phase I, it has 50–200 MW heat output for demonstrating power generation. The fusion power stations contain complete structure of fusion power plant (FPP) which do not appear in the ITER and huge HV substation which receives power from the 500 kV transmission grid for powering its pulsed power electric network (PPEN) and steady-state electric power network. Furthermore, its structure of turbine generator of FPP is similar to that of a nuclear power station of the pressurized-water reactor. This paper describes the typical CFETR loads and put forward the requirements of short circuit capacity of HV grid. It analyzes different strategies of putting the generator power to the grid, i.e. on the 500 kV grid for future DEMO power structure or 66 kV medium-voltage local grid for self-use. In period between twice burning plasma, conceptual solutions are presented to maintain thermal circuit operation. 相似文献
15.
In this paper, one standard water cooled ceramic breeder blanket sector has been modeled for the Chinese fusion engineering test reactor using RELAP5/MOD3.3 with details of anisotropic structures, positions and nuclear heat of the blanket modules. The multi-pipe manifolds of the current sector design scheme has been designed and analyzed. And an optimized scheme was proposed to further reduce the pressure drop, uniform the flow distribution, and prevent overheating. Also the fusion power excursion transients were simulated to evaluate the system heat removal and recovery ability. The results indicated that high-transient heat flux up to 0.8 MW/m2 can cause sub-cooled boiling of the coolant in the first wall area of certain modules. Coolant returns to single phase soon after the end of the transient. According to the analysis, it is suggested that the blanket modules surrounding plasma have as similar structure design features as possible and sizes of the modules should be kept relatively small so as to obtain a reasonable pressure drop. 相似文献
16.
The central solenoid (CS) is an important com ponent of China Fusion Engineering Test Reactor,for producing,forming and stabilizing plasma in the superconducting tokamak.It is a complicated work to design and manufacture the large superconducting CS magnet,so it is meaningful to design a central solenoid model coil (CSMC) and analyze its electromagnetic properties in advance.In this paper,the structure,design parameters and magnetic field distribution of the CS model coil are dis cussed.The peak power of radial and axial turn conductors and time bucket loss are analyzed by using piecewise-linear method.The CSMC AC loss with different Nb3Sn CICCs and AC loss of ITER CS coil are compared.The special electrometric method to measure AC loss of the CS model coil for fu ture reference is presented. 相似文献
17.
Changqi Chen Songsong Qi Hongjun Tang Mingzhun Lei Yuntao Song 《Journal of Fusion Energy》2014,33(5):535-539
China Fusion Engineering Test Reactor (CFETR) is a superconducting tokamak which is designed by China National Integration design Group for Magnetic Confinement Fusion. CFETR Blanket, as a plasma-facing component withstand very high heat load, is very critical for fusion reactor operation. The first wall (FW) is one of the most significant components of the blanket. The cooling system of the FW has been designed. Meanwhile, thermal–dynamic calculations are performed to obtain the coolant feature and temperature distribution of the FW using ANSYS CFX code. Besides, thermo-mechanical coupling analysis is carried out using the temperature distribution from thermal–dynamic calculation as boundary condition. In addition, cooling channel optimization is proposed according to the analysis results. Analysis results of the optimization cooling channel indicate that the maximum temperature and thermal stress satisfy the design requirements of the FW. 相似文献
18.
Chinese Fusion Engineering Test Reactor (CFETR) is a test tokamak reactor to bridge the gap between ITER and future fusion power plant. As its objectives are to demonstrate generation of fusion power and to realize tritium self-sufficiency, the tritium breeding ratio (TBR) is a key design parameter. In the blanket design and optimization, the structures such as the first wall (FW), cooling plate (CP), stiffening plate (SP), cap and some other design parameters in detailed 3-D model have significant impacts on the tritium breeding performance. Based on a helium cooled solid breeder blanket option for CFETR, the impact analysis of the helium cooled solid blanket structures on tritium breeding performance was performed in this paper. Firstly, the detailed 3D neutronics model was built by using of a CAD to Monte Carlo Geometry conversion tool McCad. Then based on the detailed 3D neutronics model, the impact analyses of the blanket structures on tritium breeding performance were carried out, which include the FW, CP, SP, cap and side wall. By the sensitivity study of the blanket structures on the TBR, it gave the TBR variation trend and references for the blanket design and optimization. 相似文献
19.
Xiaoman Cheng Xuebin Ma Youhua Chen Songlin Liu 《Journal of Nuclear Science and Technology》2016,53(11):1673-1680
The Chinese fusion engineering test reactor (CFETR) was expected to bridge from the international thermonuclear experimental reactor (ITER) to the demonstration fusion reactor (DEMO). The water-cooled ceramic breeder (WCCB) blanket is one of the blanket candidates for CFETR. In this paper, preliminary thermal hydraulic safety analyses have been carried out using the system safety analysis code RELAP5 originally developed for light water fission reactors. The pulse operation and three typical loss of coolant accidents (LOCAs), namely, in-vessel LOCA, in-box LOCA, and ex-vessel LOCA, were simulated based on steady-state initialization. Simulation results show that important thermal hydraulic parameters, such as pressure and temperature can meet the design criterion which preliminarily verifies the feasibility of the WCCB blanket from the safety point of view. 相似文献
20.
China Fusion Engineering Test Reactor is a new tokamak device which is proposed by China National Integration Design Group. The fusion power is 50–200 MW and its plasma major radius and plasma minor radius are 5.7 and 1.6 m. The helium cooled lithium ceramic (HECLIC) blanket, as a key component of the tokamak, has the basic function to provide tritium breeding and plasma limiter. The blanket also provides main thermal and nuclear shielding of the vacuum vessel and ex-vessel components such as magnetic coils during plasma operations. With the development of the numerical simulation technology, more and more design parameters can be obtained by this method. Numerical simulation has been used for design and optimization, because some parameters are very hard to obtain though theoretical calculation. In this study, the simulation methods are investigated for HECLIC blanket design. Besides, design flow of the blanket is discussed and related analysis is also introduced to improve the design. 相似文献