首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
电梯故障时,具有故障特征提取困难和故障类型识别率低的问题。因此,拟提取其振动信号并进行分析,找到故障特征。然而,鉴于其振动信号为非平稳、非高斯且背景噪声较大的信号,给有效辨识造成很大困难,所以,提出应用最优小波包分解和最小二乘支持向量机相结合进行电梯智能故障诊断的方法。借助最优小波包理论,首先提取电梯故障振动信号的能量分布;然后将其能量分布与时域指标相结合,构造故障特征向量;最后,将故障特征向量作为粒子群算法优化最小二乘支持向量机的输入对电梯故障类型进行识别。仿真结果表明,最优小波包理论与最小二乘支持向量机相结合的故障诊断技术发挥了两者的优势,证明了该方法的有效性和实用性。  相似文献   

2.
小波包结合支持向量机的故障诊断方法   总被引:2,自引:2,他引:2  
提出一种结合小波包分析(WPA)理论和支持向量机(SVM)分类器的机械故障诊断方法。该方法具有重复训练样本少,简单、直观的优点,具有很高的分类性能。利用获得的机械故障数据建立故障分类器,对不同测试集条件下的3种SVM核函数、SVM方法与神经网络方法的比较结果证明,基于小波包和支持向量机的故障诊断方法是机械故障诊断的发展方向。并对实验的最佳训练样本集进行讨论。  相似文献   

3.
提升机载吊舱的后勤保障能力,适应吊舱测试中多型号、多故障类型和测试环境动态变化的测试要求,是打赢现代化战争的重要保障。支持向量机(SVM)算法适用于小样本、高维度、非线性分类问题,SVM相关参数是影响算法性能的重要因素。基于K-CV算法和粒子群算法两种改进的SVM模型可以实现SVM参数优化,K-CV算法可以交叉验证优化模型参数,粒子群算法可以对SVM参数进行动态寻优,建立多核SVM吊舱故障诊断模型。两种算法都可以提高吊舱故障诊断模型的准确率,提高模型的学习能力和泛化能力,有效对吊舱的故障进行定量和定位诊断。  相似文献   

4.
基于支持向量机的旋转机械故障诊断   总被引:2,自引:2,他引:2  
为了解决旋转机械故障的在线诊断识别问题,用小波包从旋转机械的震动信号中提取特征向量,给出了一种基于支持向量机的故障诊断分类方法。该方法通过有限的学习样本,建立旋转机械故障特征与其运行状态之间的关系。利用获得的矿井提升机减速箱齿轮数据建立了多级故障分类器,通过对样本的分类输出检验,验证了该故障诊断方法的可行性。  相似文献   

5.
将支持向量机应用于故障的分类诊断,通过实例建立了两类故障分类器和多故障分类器,给出了具体的建立多故障分类器的步骤和仿真结果。最后提出了一种新的方法——基于支持向量机的并行诊断网络。  相似文献   

6.
针对齿轮箱振动信号非平稳特性以及故障样本数据处理困难的特点,提出了基于小波包分解和孪生支持向量机的故障诊断方法。首先采集信号通过Mallat塔式算法对信号进行小波分解再重构从而获得频带能量谱,然后通过归一化的方法再提取各频带的故障诊断特征向量。并将它送入孪生支持向量机进行训练。实验表明,该方法有效提高了分类精度和鲁棒性,而且具有较高的诊断效率。  相似文献   

7.
为了解决因缺少大量故障数据样本而制约机械故障智能诊断发展的问题,提出了一种基于支持向量机的故障诊断模型。该模型建立在VC维理论和结构风险最小原理基础上,根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折衷。在选取诊断模型输入向量时,对故障信号功率谱进行小波分解,简化了故障特征向量的提取。仿真结果表明该模型可以有效地对旋转机械设备故障进行诊断。  相似文献   

8.
支持向量机(SVM)作为当前新型的机器学习方式,凭借解决小样本问题、高维问题和局部极值问题等方面的优越性,在当前故障诊断方面有突出的表现;文章根据对支持向量机的研究,发现其在分类模型参数选择上存在困难,为此,提出利用改进粒子群算法优化的办法,解决粒子群前期收敛速度过快导致后期容易优化不均的现象;通过粒子群算法优化与支持向量机分类模型结合,以轴承故障检测和诊断为例,分析次方法的优越性和提高支持向量机在故障诊断过程中的精准度;通过实际检测得出,这种算法优化的方法改进的支持向量机对于聚类性较差的故障分类具有很好的诊断功能。  相似文献   

9.
基于支持向量机故障诊断方法   总被引:1,自引:0,他引:1  
支持向量机是一种基于统计学习理论的机器学习算法,它能在训练样本很少的情况下达到很好的分类效果.本文以双螺杆挤出机为例,介绍了基于支持向量机的多故障分类器,探讨了"成对分类"与"一类对多类"两种多类分类算法的应用.诊断实例表明,基于支持向量机的多故障分类器对设备故障具有很好的分类效果.  相似文献   

10.
基于粒子群算法优化支持向量机汽车故障诊断研究   总被引:1,自引:0,他引:1  
汽车故障检测和诊断技术一直是国内外研究热点问题。支持向量机用于汽车故障诊断时,其多分类组合决策对分类正确率及诊断时间有很大影响,为了有效提高汽车系统故障诊断的效率和精度,提出了一种基于粒子群算法优化层次支持向量机汽车故障诊断检测方法。针对分解支持向量机具有测试时间短、结构难以确定的特点,利用粒子群算法,依据最大间隔距离原则优化层次支持向量机模型,使每个节点的支持向量机具有最大分类间隔,减少了误差积累,从而优化了多级二叉树结构的SVM,实现故障的分级诊断。仿真实验结果表明,提出的算法在所有参比模型中精度最高,能高效地对汽车系统的故障进行检测与定位,具有较强的泛化能力,同时缩短了故障诊断时间。  相似文献   

11.
基于最小二乘支持向量机的故障诊断方法   总被引:1,自引:1,他引:1  
提出了一种小波包分析与最小二乘支持向量机相结合的机械设备故障诊断模型.首先对故障信号功率谱进行小波分解,简化了故障特征向量的提取,然后采用最小二乘支持向量机进行故障诊断.在该模型中,用二次损失函数取代支持向量机中的不敏感损失函数,将不等式约束条件变为等式约束,从而将二次规划问题转换为线性方程组的求解,并提出对核函数的σ参数进行动态选取.仿真结果表明:该模型可以取得较高的故障诊断准确率.  相似文献   

12.
随着航空电子系统的不断发展,复杂性和关键性不断增强,其故障的实时在线诊断越来越受到重视;针对电子系统在故障诊断中表现出的非线性、复杂性、强干扰性和多样性的特点,提出采用支持向量机进行航空电子系统的故障诊断;同时,采用粒子群优化(PSO)算法实现支持向量机的参数寻优,以提高其参数选择的效率,避免人为选择参数的不足;仿真实验表明,该方法融合航空电子系统的多点测试信息,结构简单时效性高,故障检测正确率达到97.5%,平均故障识别正确率达到96.9%,适用于信息融合型的航空电子系统在线智能故障诊断.  相似文献   

13.
为了提高变压器故障诊断的准确率,提出了一种支持向量机(SVM)和改进布谷鸟算法(WCS)及最速下降法相结合的电力变压器故障诊断方法.引入一种新的惯性权重,解决布谷鸟算法在迭代后期收敛速度下降的问题.利用最速下降法与改进的布谷鸟算法相结合的算法进行SVM参数的寻优,克服了基本的SVM模型容易陷入局部最优的缺陷,从而得到具有最佳参数的支持向量机分类模型,利用LIBSVM工具箱在MATLAB软件平台上训练支持向量机,用训练良好的支持向量机诊断110kV甘棠变电所#1主变压器故障情况.通过实例验证分析表明,采用该算法可以准确、有效地对变压器进行故障诊断;相较于粒子群算法(PSO)、遗传算法(GA)、网格搜索算法(GS)等算法,该方法具有更高的诊断准确率.  相似文献   

14.
基于小波包和AGA-LSSVM模型的滚动轴承故障诊断   总被引:1,自引:0,他引:1  
为了解决滚动轴承故障特征提取和故障类型识别问题,提高诊断准确率,提出了一种基于小波包与自适应遗传算法优化最小二乘支持向量机(AGA-LSSVM)相结合的故障诊断模型.首先由小波包分解与重构获取振动信号中能反映不同故障状态的能量特征向量,其次,由经过自适应遗传算法优化的LSSVM模型对滚动轴承常见故障进行诊断.Matlab运行结果表明,相较于传统LSSVM方法,所采用的方法可靠度较高,可以较好地实现对轴承故障的诊断.  相似文献   

15.
研究利用支持向量机对发动机的两类故障——失速和喘振进行识别。介绍了支持向量机理论,选取适当的学习算法、惩罚因子和核函数,建立了支持向量机,并采用4组已知故障模式的数据对其进行训练和测试,之后对另外两组数据进行仿真识别,仿真结果与实际故障模式一致。  相似文献   

16.
基于支持向量机的非线性系统故障诊断   总被引:29,自引:1,他引:29  
胡寿松  王源 《控制与决策》2001,16(5):617-620
提出了联想度的概念,并由此设计出一种自组织模糊CMAC(SOFCMAC)及其学习算法,证明了SOFCMAC能以任意精度对非线性特性一致逼近。该网络具有学习速度快,逼近精度高等特点,用该SOFCMAC作为非线性系统观测器而生成残差,通过支持向量诊断器得到故障检测与诊断结果。对某型歼击机的结构故障进行诊断,仿真结果表明了该方法的有效性。  相似文献   

17.
基于支持向量机的涡轮泵故障诊断方法研究   总被引:1,自引:0,他引:1  
针对涡轮泵的几种典型常见故障,应用支持向量机(SVM)构造多元分类器,解决故障诊断等多分类问题,在此基础上建立了基于支持向量机的故障诊断模型。试验结果表明,与神经网络相比,采用支持向量机进行故障诊断可得到更高的精度,表现出较好的分类和抗噪能力,而且效率高于神经网络,说明该方法是有效、可行的。  相似文献   

18.
针对轴承振动信号中的故障信息往往很微弱,同时振动样本数据分布不平衡即故障样本占总样本数的比例低,从而导致故障诊断模型训练不精确而影响诊断精度的问题,提出了一种基于拉普拉斯分值和超球大间隔支持向量机的故障诊断方法;首先,采用有标签的训练样本数据和拉普拉斯分值法提取原始振动信号中的微弱故障信息,并降低其数据维数,从而得到用于故障诊断的特征向量,然后设计了一种改进的超球大间隔支持向量机的故障诊断模型,通过最小化超球体积和最大化超球边界和故障样本之间的间隔来实现故障诊断,以解决样本的不均衡问题,最终通过将测试样本数据代入决策方程并通过投票机制确定其故障类别;在Matlab环境下对轴承故障诊断进行实验,实验结果证明了文中方法能有效解决样本的不均衡情况下的故障诊断,且相对其它方法,具有诊断精度高和收敛速度快的优点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号