首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2021,47(18):25408-25415
To meet requirements for high porosity and high strength, novel aqueous gel-casting process has been successfully developed to fabricate Al2O3-bonded porous fibrous YSZ ceramics with ρ-Al2O3 and YSZ fibers as raw materials. Microstructure, phase composition, apparent porosity, bulk density, thermal conductivity, and compressive strength of fabricated porous ceramics were investigated, and effects of fiber content on properties were discussed. According to results, bird nest 3D mesh with interlaced YSZ fibers and Al2O3 binder was formed, ensuring the ability to obtain high performance, lightweight ceramics. An increase in the number of YSZ fibers led to more complex interlaced arrangement of fibers and denser network structure of porous ceramics at retaining their stability. Furthermore, their apparent porosity and bulk density increased, whereas thermal conductivity and compressive strength decreased with increasing the fiber content. In particular, comparatively high porosity (71.1–72.7%), low thermal conductivity (0.209–0.503 W/mK), and relatively high compressive strength (3.45–4.24 MPa) were obtained for as-prepared porous ceramics, making them promising for applications in filters, thermal insulation materials, and separation membranes.  相似文献   

2.
《Ceramics International》2023,49(20):33247-33254
In this study, a series of porous ceramics were prepared using different ratios of small and large size MA hollow ceramic spheres as pore-forming agents, and their thermal insulation properties were investigated. The results showed that increasing the proportion of small size hollow ceramic spheres could effectively decrease the thermal conductivity and improve the compressive strength of the porous ceramics. The optimal porous ceramic was prepared with a ratio of 10∼50 of small and large size hollow ceramic spheres, which had a thermal conductivity of 0.368 W/(m·K) at 800 °C and a compressive strength of 22.43 MPa. Microscopic analysis indicated that the enhanced thermal insulation and mechanical properties were due to the improved pore structure and the enhanced bonding strength between the ceramic spheres and the matrix. The findings provide valuable insights for the development of high-performance thermal insulation materials.  相似文献   

3.
Yttria-stabilized zirconia (YSZ) porous ceramic foams were fabricated using YSZ microspheres with holes on the surface to determine their properties as insulation materials. Highly porous YSZ ceramics with bimodal pore structures, such as internal pores in single hollow spheres and external pores between the spheres, were successfully prepared using YSZ spheres as raw materials. Additionally, holes were added to the shells to reduce continuous thermal pathways and significantly enhance the insulation properties. Furthermore, by adding holes on the surface of the sphere, the porous foams using a hollow sphere exhibit a maximized porosity of 80.69%, remarkably enhanced their insulation properties with low thermal conductivity (0.10 W/m-K), and have sufficient compressive strength to protect the green body (5.7 MPa). The mechanical strength of the YSZ porous foam was maintained owing to the uniform arrangement of the supports.  相似文献   

4.
Mullite fiber was used to fabricate ZrO2-mullite based porous ceramic via tert-butyl alcohol (TBA)-based gel-casting process using zirconite and bauxite as raw materials. Phase compositions, microstructure, pore size distribution, linear shrinkage, bulk density, apparent porosity, thermal conductivity, and compressive strength were analyzed to investigate influences of mullite fiber content and added Y2O3 on prepared porous ceramics. Results show that bird nest-like three-dimensional fibrous reticular skeleton structure was constructed with mullite fibers that evenly enwrapped rod-like mullite and ZrO2 grains. Prepared porous fibrous ZrO2-mullite ceramics had narrow pore size distribution that consisted of mullite and m-ZrO2. With an increase in mullite fiber content, linear shrinkage and bulk density decreased, apparent porosity increased, and relatively good thermal conductivity was obtained. In addition, added Y2O3 reacted with Al2O3 and SiO2 to form Y-Al-Si-O glass phase, which promoted sintering and densification of the ceramic, thus improving its compressive strength.  相似文献   

5.
Porous mullite ceramics with an open/closed pore structure were prepared by protein foaming method combined with fly ash hollow spheres. Both the open porosity and total porosity of samples were enhanced by increasing the hollow sphere content. Mullite whiskers with a diameter of 0.2–4 μm were grown in-situ in the porous mullite ceramics with an AlF3 catalyst, conforming to a vapor-solid growth mechanism. The pore structure of the porous mullite ceramics was significantly affected by the mullite whiskers which increased the open porosity and total porosity. Moreover, the median pore size was reduced from 65.05 μm to 36.92 μm after the introduction of mullite whiskers. The flexural strength and the thermal conductivity of the samples decreased with increasing total porosity. The porosity dependence of the thermal conductivity was well described by the universal model, providing a reference for the prediction of thermal conductivity of porous ceramics with open/closed pores.  相似文献   

6.
The introduction of multiple heterogeneous interfaces in a ceramic is an efficient way to increase its thermal resistance. Novel porous SiC–SiO2–Al2O3–TiO2 (SSAT) ceramics were fabricated to achieve multiple heterogeneous interfaces by sintering equal volumes of SiC, SiO2, Al2O3, and TiO2 compacted powders with polysiloxane as a bonding phase and carbon as a template at 600 °C in air. The porosity could be controlled between 66% and 74% by adjusting the amounts of polysiloxane and the carbon template. The lowest thermal conductivity (0.059 W/(m·K) at 74% porosity) obtained in this study is an order of magnitude lower than those (0.2–1.3 W/(m·K)) of porous monolithic SiC, SiO2, Al2O3, and TiO2 ceramics at an equivalent porosity. The typical specific compressive strength value of the porous SSAT ceramics at 74% porosity was 3.2 MPa cm3/g.  相似文献   

7.
Highly porous zirconia fibers networks with a quasi-layered microstructure were successfully fabricated using vacuum squeeze moulding. The effects of inorganic binder content on the microstructure, room-temperature thermal and mechanical properties of fibrous porous zirconia ceramics were systematically investigated. Al2O3–SiO2 aerogel was impregnated into fibrous porous ceramics, and the microstructures, thermal and mechanical properties of Al2O3–SiO2 aerogel/porous zirconia composites were also studied. Results show that the Al2O3–SiO2 aerogel/porous zirconia composites exhibited higher compressive strength (i.e., 1.22 MPa in the z direction) and lower thermal conductivity [i.e., 0.049 W/(m/K)]. This method provides an efficient way to prepare high-temperature thermal insulation materials.  相似文献   

8.
In this paper, we first reported that porous SiC–Al2O3 ceramics were prepared from solid waste coal ash, activated carbon, and commercial SiC powder by a carbothermal reduction reaction (CRR) method under Ar atmosphere. The effects of addition amounts of SiC (0, 10, 15, and 20 wt%) on the postsintering properties of as-prepared porous SiC–Al2O3 ceramics, such as phase composition, microstructure, apparent porosity, bulk density, pore size distribution, compressive strength, thermal shock resistance, and thermal diffusivity have been investigated. It was found that the final products are β-SiC and α-Al2O3. Meanwhile, the SEM shows the pores distribute uniformly and the body gradually contacts closely in the porous SiC–Al2O3 ceramics. The properties of as-prepared porous SiC–Al2O3 ceramics were found to be remarkably improved by adding proper amounts of SiC (10, 15, and 20 wt%). However, further increasing the amount of SiC leads to a decrease in thermal shock resistance and mechanical properties. Porous SiC–Al2O3 ceramics doped with 10 wt% SiC and sintered at 1600°C for 5 hours with the median pore diameter of 4.24 μm, room-temperature compressive strength of 21.70 MPa, apparent porosity of 48%, and thermal diffusivity of 0.0194 cm2/s were successfully obtained.  相似文献   

9.
《Ceramics International》2017,43(7):5478-5483
Porous fibrous mullite ceramics with a narrow range of pore size distribution have been successfully prepared utilizing a near net-shape epoxy resin gel-casting process by using mullite fibers, Al2O3 and SiC as raw materials. The effects of sintering temperatures, different amounts of fibers and Y2O3 additive on the phase compositions, linear shrinkage, apparent porosity, bulk density, microstructure, compressive strength and thermal conductivity were investigated. The results indicated that mullite-bonded among fibers were formed in the porous fibrous mullite ceramics with a bird nest pore structure. After determining the sintering temperatures and the amount of fibers, the tailored porous fibrous mullite ceramics had a low linear shrinkage (1.36–3.08%), a high apparent porosity (61.1–71.7%), a relatively high compressive strength (4.4–7.6 MPa), a low thermal conductivity (0.378–0.467 W/m K) and a narrow range of pore size distribution (around 5 µm). The excellent properties will enable the porous ceramics as a promising candidate for the applications of hot gas filters, thermal insulation materials at high temperatures.  相似文献   

10.
Porous Al2O3 ceramics with different contents of alumina fibers were prepared by gel-casting process. The effects of Al2O3 fiber content on pore size distribution, porosity, compressive strength, and load-displacement behavior of the ceramic materials were investigated. Initial results showed that with the increase of Al2O3 fiber content, the pore size and porosity of the material is increased, and the compressive strength is decreased. However, upon increasing the fiber content from 50 wt% to 67 wt%, the performance of the samples changed greatly. The compressive strength of the material increased, while the porosity remained unchanged, the pore size increased greatly, and the shape of the load displacement curve changed. It showed that when the fiber content increased from 50 wt% to 67 wt%, the loading body in the fiber-reinforced porous ceramics changed from particles to fibers.  相似文献   

11.
The objective of this study was to prepare highly porous mullite ceramics with relatively large-sized pores and improved compressive strength using a freeze/gel casting route combined with polymer sponge for recycling of coal fly ash into high value-added ceramics. In this work, a tertiary-butyl alcohol /coal fly ash slurry system with an appropriate addition of Al2O3 was used. A reticulated structure with large pore size of 220–300 μm, which formed on burnout of polyurethane was obtained; then, the skeletons consisted mainly of more dense crystalline phases together with a few fine pores (<3 μm). The rod-shaped mullite crystals with an aspect ratio of >3.7 (~4 μm in diameter) seen to have grown within the silicate melts existed. The compressive strength of the sintered porous materials increased in the reverse order of the degree of porosity, i.e. low porosity gave a high compressive strength. The porous materials with an average porosity of 61.6 %, sintered at 1600 °C with 70 wt.% solid loading showed the maximum average compressive strength (~45 MPa).  相似文献   

12.
Al2O3 ceramic foams-based composites were firstly synthesized to be used as the thermal insulation material which has excellent mechanical properties of the substrate material and better thermal properties of hollow microspheres. In this research, by doping TEOS, the monolithic hollow microspheres were prepared via a novel and effective synthesis route using propylene oxide as the gelation initiator to induce the gelation of aluminum chloride hexahydrate solution. The influence of TEOS on the morphology and high-temperature stability of the monolithic hollow microspheres was clarified in detail. Based on the optimized additive amount of TEOS, Al2O3 ceramic foams were introduced as the substrate material of alumina-silica hollow microspheres to fabricate the final Al2O3 ceramic foams-based composites. Benefited from this special structure, the Al2O3 ceramic foams-based composites displayed excellent mechanical properties and thermal properties. The samples changed less in appearance and did not show significant shrinkage after heat-treatment at 1200 °C. The density, bending strength and thermal conductivity of the Al2O3 ceramic foams-based composite were 0.32 g/cm3, 1.8 MPa and 0.12 W/m K, respectively.  相似文献   

13.
《Ceramics International》2022,48(8):10472-10479
Porous mullite ceramics are widely used in heat insulation owing to their high temperature and corrosion resistant properties. Reducing the thermal conductivity by increasing porosity, while ensuring a high compressive strength, is vital for the synthesis of high-strength and lightweight porous mullite ceramics. In this study, ceramic microspheres are initially prepared from pre-treated high-alumina fly ash by spray drying, and then used to successfully prepare porous mullite ceramics with enhanced compressive strength via a simple direct stacking and sintering approach. The influence of sintering temperature and time on the microstructure and properties of porous mullite ceramics was evaluated, and the corresponding formation mechanism was elucidated. Results show that the porous mullite ceramics, calcined at 1550 °C for 3 h, possess a porosity of 47%, compressive strength of 31.4 MPa, and thermal conductivity of 0.775 W/(m?K) (at 25 °C), similar to mullite ceramics prepared from pure raw materials. The uniform pore size distribution and sintered neck between the microspheres contribute to the high compressive strength of mullite ceramics, while maintaining high porosity.  相似文献   

14.
《Ceramics International》2021,47(24):33978-33987
In this work, a novel and facile technique based on using KCl as space holders, along with partial sintering (at 1900 °C for 30 min), was explored to prepare porous ZrB2–SiC ceramics with controllable pore structure, tunable compressive strength and thermal conductivity. The as-prepared porous ZrB2–SiC samples possess high porosity of 45–67%, low average pore size of 3–7 μm, high compressive strength of 32–106 MPa, and low room temperature thermal conductivity of 13–34 W m−1 K−1. The porosity, pore structure, compressive strength and thermal conductivity of porous ZrB2–SiC ceramics can be tuned simply by changing KCl content and its particle size. The effect of porosity and pore structure on the thermal conductivity of as-prepared porous ZrB2–SiC ceramics was examined and found to be consistent with the classical model for porous materials. The poring mechanism of porous ZrB2–SiC samples via adding pore-forming agent combined with partial sintering was also preliminary illustrated.  相似文献   

15.
《Ceramics International》2022,48(18):25918-25922
Porous alumina ceramics with alumina platelets was prepared by vapor-solid reaction sintering of AlOF mesophase gas by the reaction of HF and Al2O3. The effect of heating treatment temperatures on porosity, the formation of inter-locked platelets structure and compressive strength of porous alumina ceramics was determined by Archimedes' method, XRD, SEM and compressive tests. The results indicated that after heating at temperatures from 1300 °C to 1600 °C, the porosity of alumina ceramics decreased from 61.6% to 48.4%. Increasing the heating treatment temperature was beneficial to form inter-locked structure between alumina platelets. The maximum compressive strength of porous ceramics with porosity of 48.4% can reach 29.8 MPa heated at 1600 °C; this strength was attributed to the strong bonding between the alumina platelets.  相似文献   

16.
Porous YSZ ceramics reinforced by different fibers were prepared by gel‐casting with 15% solid content and pressureless sintering. The four kinds of fibers (mullite, aluminosilicate, Al2O3, and YSZ fibers) were added into the YSZ ceramics with the same 10% vol content. After sintered at 1500°C for 2 h, aluminosilicate and mullite fibers could not be found in the samples of porous YSZ ceramics, which showed they reacted with YSZ ceramics at high temperature, while YSZ and Al2O3 fibers still kept perfect after sintering. Furthermore, the influences of fiber content, sintering temperature, porosity of matrix materials on compressive strength and porosity of the porous YSZ ceramics were studied. The results showed that Al2O3 fiber showed more obvious reinforcing effect than YSZ fiber on porous YSZ ceramics. The fiber‐reinforcing effects depend on fiber content, sintering temperature, and porosity of matrix materials. The fiber addition can improve the shrinkage behavior of porous ceramics during sintering and strengthen the skeleton of porous ceramics.  相似文献   

17.
《Ceramics International》2020,46(17):26888-26894
The mechanical properties of porous ceramics prepared by poly-hollow microspheres (PHMs) is usually low because of the weak bonding between different ceramic PHMs. In this paper, CaSiO3 were coated to the surface of Al2O3 PHMs through co-precipitation method as sintering additive to improve the properties of Al2O3 poly-hollow microsphere ceramics (Al2O3 PHM ceramics). The influence of different amount of CaCl2 solution on properties of the Al2O3 PHM ceramics such as phase composition, microstructure, porosity and mechanical properties were studied. The porosity of the Al2O3 PHM ceramics decreased from 77.03% to 68.16% with the increase of CaCl2 solution amount, while compressive strength increased 29 times from 0.29 MPa to 8.39 MPa. The addition of the CaSiO3 could decrease the sintering temperature of Al2O3 PHM ceramics and significantly improve the mechanical properties of Al2O3 PHM ceramics, which is beneficial for preparing highly porous Al2O3 PHM ceramics with high mechanical properties and complex shapes.  相似文献   

18.
《Ceramics International》2022,48(3):3578-3584
Porous mullite ceramics are potential advanced thermal insulating materials. Pore structure and purity are the main factors that affect properties of these ceramics. In this study, high performance porous mullite ceramics were prepared via aqueous gel-casting using mullite fibers and kaolin as the raw materials and ρ-Al2O3 as the gelling agent. Effects of addition of mullite fibers on the pore structure and properties were examined. The results indicated that mullite phase in situ formed by kaolin, and ρ-Al2O3 ensured the purity of mullite samples and mullite fibers bonded together to form a nest-like structure, greatly improving the properties of ceramic samples. In particular, the apparent porosity of mullite samples reached 73.6%. In the presence of 75% of mullite fibers, the thermal conductivity was only 0.289 W/m K at room temperature. Moreover, the mullite samples possessed relatively high cold compressive strength in the range of 4.9–9.6 MPa. Therefore, porous mullite ceramics prepared via aqueous gel-casting could be used for wide applications in thermal insulation materials, attributing to the excellent properties such as high cold compressive strength and low thermal conductivity.  相似文献   

19.
The effects of porosity on the electrical and thermal conductivities of porous SiC ceramics, containing Y2O3–AlN additives, were investigated. The porosity of the porous SiC ceramic could be controlled in the range of 28–64 % by adjusting the sacrificial template (polymer microbead) content (0–30 wt%) and sintering temperature (1800–2000 °C). Both electrical and thermal conductivities of the porous SiC ceramics decreased, from 7.7 to 1.7 Ω−1 cm−1 and from 37.9 to 5.8 W/(m·K), respectively, with the increase in porosity from 30 to 63 %. The porous SiC ceramic with a coarser microstructure exhibited higher electrical and thermal conductivities than those of the ceramic with a finer microstructure at the equivalent porosity because of the smaller number of grain boundaries per unit volume. The decoupling of the electrical conductivity from the thermal conductivity was possible to some extent by adjusting the sintering temperature, i.e., microstructure, of the porous SiC ceramic.  相似文献   

20.
The large shrinkage that ceramics undergo during sintering is a severe challenge for high-performance porous ceramics. In this study, we report a powder-based selective laser sintering (SLS) approach to prepare Al2O3 ceramic foams with near-zero shrinkage, high porosity, and outstanding strength. The ceramic foams consist of specific coral-like and hollow-sphere structures derived from the raw Al2O3/Al composite powders via reaction bonding (RB). A near-zero shrinkage of 0.91 ± 0.15 % and a high porosity of 73.7 ± 0.2 % can be achieved based on the Kirkendall effect during the oxidation of Al particles. Meanwhile, the reinforced sintering necks and robust bond-bridge connections between hollow-sphere and coral-like structures result in a remarkable bending strength of 7.37 ± 0.37 MPa. This measured strength is more than six times higher than other fabricated samples from spherical Al2O3 powders, and the comprehensive performance of ceramic foams prepared by this novel SLS/RB strategy is exceptionally remarkable versus that via conventional forming methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号