共查询到19条相似文献,搜索用时 62 毫秒
1.
孔隙岩石的SHPB试验研究 总被引:3,自引:2,他引:3
利用分离式Hopkinson压杆装置测量砂岩的动态力学特性,分析冲击过程和砂岩能量耗散过程,进一步讨论孔隙率对人造岩能量耗散的影响。试验结果表明:利用。维应力波理论得到动载下砂岩的应力-应变关系曲线,有助于在数值模拟计算中选择合适的模型和参数;山于砂岩中存在大量的缺陷(微裂隙、空洞和孔隙等),故在冲击载荷作用下具有明显的压剪破坏形式:孔隙率对冲击载荷作用下岩石能量耗散起着重要作用;在冲击载荷作用下,随着岩石孔隙率的增加,岩石耗散的能量也增加。 相似文献
2.
高应变率下预制单节理岩石SHPB劈裂试验能量耗散分析 总被引:1,自引:0,他引:1
应用SHPB试验装置研究预制单节理岩石的能量耗散关系。使用SHPB试验系统,对高径比为0.5的完整花岗岩试样及预制单节理花岗岩试样进行高应变率下的冲击劈裂试验。在相同驱动气压下,改变加载方向与节理间的夹角,完成高应变率相同入射能下的冲击劈裂试验。对SHPB系统中的入射能、反射能、透射能及试样吸收能的时程变化规律进行了分析;从能量角度出发,分析冲击荷载作用下单节理岩石的能量耗散规律及其各向异性特征。结果表明:高应变率下,完整花岗岩试样在冲击劈裂试验中的吸收能随平均应变率增加而增加,表现出显著的应变率相关性;预制单节理岩石与加载方向之间夹角对破坏模式的影响明显,节理试样产生3种破坏模式:(1)穿越节理面的劈裂破坏;(2)沿节理岩石层面的滑移破坏;(3)劈裂与滑移破坏共同作用下的破坏。在入射能基本相同,入射时间较长时节理岩石试样吸收能较入射时间较短时的吸收能大。动态劈裂试验中,节理试样的吸收能随节理角度变化(0°~90°)近似呈U型。研究成果可为节理岩石动态力学性能研究提供参考。 相似文献
3.
岩石变形破坏过程中的能量耗散分析 总被引:27,自引:23,他引:27
岩石作为一种复杂的非均质地质材料,其力学响应表现出明显的非线性和各向异性特点。岩石在变形破坏过程中始终不断地与外界交换着物质和能量,是一个能量耗散的损伤演化过程。采用损伤演化方程可以从宏观上描述损伤变量以及与其相伴的广义热力学力——损伤能量释放率的变化规律。进一步通过细观损伤力学的研究,可以揭示岩石变形破坏过程中能量耗散的内在机制。围绕这一基于能量耗散的岩石力学研究思路及其相关进展,最终将建立基于损伤演化及能量耗散的宏.细.微观多层次耦合的岩石力学体系,这有助于更准确地解决岩石工程领域中更多的力学分析问题。 相似文献
4.
高温环境下,混凝土材料各组分之间会发生一系列复杂的物理、化学变化,进而影响到混凝土结构整体的力学性能。介绍了混凝土在不同温度范围下的破坏机理;从高温下混凝土的应变率效应、加载速率效应和温度效应等方面进行了阐述;对高温下混凝土SHPB冲击试验理论和试验技术方面存在的相关问题作了分析,并介绍了相应的解决方法。 相似文献
5.
岩石破坏的能量分析初探 总被引:29,自引:19,他引:29
从能量的角度出发,分析研究了岩石的变形破坏过程,揭示了这一过程的能量耗散及能量释放特性。理论及试验研究表明,在岩石变形破坏过程中,能量起着根本的作用。岩石的失稳破坏就是岩石中能量突然释放的结果,这种释放是能量耗散在一定条件下的突变。从力学角度而言,岩石的变形破坏过程实际上就是一个从局部耗散到局部破坏最终到整体灾变的过程;从热力学上看,这一变形、破坏、灾变过程是一种能量耗散的不可逆过程,包含能量耗散和能量释放。现有的力学理论体系主要是强调能量耗散结构和局部破坏过程,而岩石的灾变是以能量释放为其主要特征,所以有必要综合考虑能量耗散及能量释放对岩石变形破坏的影响。试验研究也揭示了应力–应变强度不能很好地描述岩石的破坏这一特性,在大体相同的应力–应变曲线下,试件的破坏形式不同,能量释放量完全不同,因此,从能量的观点可以更好地描述岩石的变形破坏。 相似文献
6.
岩石卸围压破坏过程的能量耗散分析 总被引:3,自引:0,他引:3
在分析试验机与岩样之间能量交换的基础上,综合分析岩样卸围压破坏过程的能量耗散规律,以及能量与岩样变形、围压之间的关系。研究结果表明,在卸围压破坏过程中,能量耗散与岩样的破坏特征及施加围压有较大关系;延性破坏的能量耗散大于脆性破坏,同一种破坏模式下,岩样的能量耗散随施加围压的增大而增大。2种卸围压试验均表明,能量耗散与时间呈非线性关系,与侧向变形呈线性关系,且在相同侧胀水平下,施加围压越大,能量耗散越大,岩样更具脆性破坏特征。 相似文献
7.
岩石SHPB试验信号的小波包去噪 总被引:1,自引:1,他引:1
根据岩石霍布金逊压杆(SHPB)试验测试信号的高噪声与瞬态非平稳特点,利用小波包分析技术对其进行消噪处理。所得结果与传统方法所得结果比较发现:通常经过应变仪滤波和数据邻值平均法所得的测试结果是不准确的。用能够进行时频多尺度分辨的小波包变换方法进行信号的去噪处理。在揭示信号本身的时频信息的同时,能尽可能不失真地在强噪环境下重现有效信号,将这种方法用于岩石SHPB测试信号的去噪处理,能够得到可靠的结果。 相似文献
8.
饱水砂岩动态强度的SHPB试验研究 总被引:1,自引:1,他引:1
采用改进的φ75mm杆径SHPB试验装置,对长径比为0.5的开阳磷矿砂岩进行自然风干和饱水状态下的冲击压缩试验,对比INSTRON材料试验机的静载试验结果表明:冲击载荷作用下饱水砂岩的应力–应变关系不同于其静态应力–应变关系,中应变率加载条件下饱水砂岩动态强度与风干砂岩的动态强度相近,这与静载条件下饱水砂岩强度降低的结果相反;风干砂岩动态屈服应力与其静态相近,饱水砂岩动态屈服应力比其静态下的结果提高近2倍,表现出比自然风干砂岩更强的应变率敏感性;水对砂岩动态破坏效果有影响,自然风干砂岩比饱水砂岩受冲击破坏更为严重;冲击载荷作用下,饱水砂岩动态强度应考虑其自由水黏度及Stefan效应的影响。 相似文献
9.
能量演化贯穿于岩石变形破坏全过程,基于能量角度的岩石强度与变形特性的研究,深入揭示其物理力学本质,并合理搭建理论分析至实际工程应用的桥梁.本文系统总结数十年来国内外对于不同应力状态、不同应力路径和不同加载速率下岩石的静动态能量演化规律和分配关系及尺寸、含水率、孔隙率等因素对其的影响;归纳了基于能量原理的岩石强度准则、损... 相似文献
10.
探究高温对岩石的作用机制,对于解决高温岩石工程问题具有重要意义。利用日本日立公司制造S–3000 N扫描电子显微镜对在20 ℃,200 ℃,400 ℃,600 ℃,800 ℃高温作用下以及经历400 ℃,600 ℃和800 ℃高温作用冷却后受单轴压缩破坏的徐州大理岩进行表面元素分布测定、表面形貌观察和超微结构分析,以期在细观层次上对大理岩的受压变形、强度及破坏特性等做出机制性的解释。研究结果表明:常温下徐州大理岩的颗粒较为粗大,为典型解理开裂且部分颗粒内及颗粒间存在裂纹,温度升高至800 ℃时,岩样端口表面碎裂明显、颗粒变小且形态较为规整、部分区域内存在细长裂纹;高温下和高温后受压破坏的大理岩细观结构差异较大;800 ℃之前大理岩总体的质量百分比没有明显变化,温度达到800 ℃时大理岩各元素的质量百分比发生较大的变化,Ca元素的质量百分比急剧下降而Si元素的质量百分比迅速上升,说明其结构可能发生由晶态向非晶态的相转变,致使大理岩的力学指标骤降。 相似文献
11.
采用自行研制的温–压耦合及动力扰动试验系统,在4个温度等级(20 ℃,100 ℃,200 ℃,300 ℃)且每个温度等级的试样分别施加0,20,60,80 MPa的轴向静压力,对砂岩试样进行冲击试验。基于常规的霍普金森杆压缩试验中的能量耗散原理,计算出不同温度作用下动静组合加载岩石试样的能量耗散规律。结果表明:当动载荷保持不变,岩样在温度为20 ℃,200 ℃和300 ℃且预压力为20 MPa时,能量吸收率最大;而岩石试样作用温度为100 ℃时,当冲击载荷不变,不加轴压(轴压为0 MPa)时的能量吸收率最大。研究结果有助于研究高温、高应力作用下岩石破碎机制,为研究高温作用下岩体工程起到一定的参考作用。 相似文献
12.
高应变率下砂岩动态拉伸性能SHPB试验与分析 总被引:1,自引:1,他引:1
为研究高应变率下煤矿砂岩的动态拉伸性能,将岩样加工成厚径比为0.5的圆盘试件,利用直锥变截面分离式Hopkinson压杆(SHPB)试验装置,采用6种冲击气压对试件沿径向进行加载,实施不同加载速率的动态劈裂拉伸试验,测试试件的动态拉伸应力和应变率。试验结果表明:砂岩试件的动态劈裂破坏形态满足巴西圆盘试验有效性条件,试件内的径向应力分布达到应力均匀性要求;分析试验实测波形和应变率效应,得出高应变率下煤矿砂岩试件的拉伸应力和应变率特性。在试验采用冲击气压范围内,试件平均应变率由48 s-1增加至137 s-1,平均应变率与冲击气压近似为对数函数关系,动态拉伸强度与平均应变率近似为乘幂函数关系。 相似文献
13.
岩石SHPB测试中试样恒应变率变形的加载条件 总被引:2,自引:2,他引:2
从分析霍布金逊压杆测试中试样变形应力、入射应力、反射应力和透射应力的相互关系入手,获得满足试样恒应变率变形所需的加载条件,即只有当加载应力和试样的变形应力具有相同的变化规律时,试样变形才处于恒应变率状态。试验结果表明,整形器法和异形冲头法都能在一定程度上实现试样的恒应变率测试,双试样法实际是整形器法的一个特例。整形器法更适合于理想弹脆性岩类的测试,异形冲头法对具有幂函数型本构曲线岩类和未知本构特征材料的测试有利,并且可重复性好。能产生半正弦波的异形冲头法可减小波形弥散对测试结果的影响。 相似文献
14.
围压与温度共同作用下盐岩的SHPB实验及数值分析 总被引:1,自引:1,他引:1
在自主研制的可进行围压和温度共同加载的分离式Hopkinson压杆(SHPB)实验装置TSCPT-SHPB基础上,对盐岩在5~25 MPa围压作用下的轴向动力性能以及盐岩在40 ℃~80 ℃,0.0~0.5 MPa围压下进行实验研究,分析围压和应变率对盐岩在围压作用下轴向抗压强度动力增长系数(DIF)的影响,以及温度和围压对盐岩动态力学性能的影响。结果表明:在动态作用下,围压对盐岩延性的提高有显著影响;盐岩属率敏感性和温度敏感性材料,其峰值强度随应变率的提高而提高,在低围压下的提高幅度比高围压下显著,并得到实验范围内盐岩材料动力增长系数(DIF)与围压和应变率关系的表达式;在高应变率(400 s-1)条件下,盐岩的动态峰值强度随温度的升高而降低,并依据实验数据,拟合得到峰值强度在各实验温度下随围压变化的计算公式。为考虑应变软化效应,对ABAQUS有限元软件中的Drucker-Prager模型进行改进,并基于单向动态围压下的实验数据拟合的计算参数,对盐岩TSCP-SHPB实验进行数值模拟,模拟结果与实验结果吻合较好。 相似文献
15.
提出圆盘冲击劈裂试验中求解岩石拉伸弹性模量的解析算法。结合圆盘对心受力的理论弹性解和实际试验过程中方便测量的物理参数,基于微积分原理,得到岩石拉伸弹性模量和垂直加载方向上总位移变形量之间的定量关系式。在此基础上,考察试样中心平行加载方向和垂直加载方向位移量之间的关系,认为两者之间存在线性关系,可以用比例函数进行表示。最后,结合SHPB冲击劈裂试验原理,通过测量得到平行加载方向位移,利用得到的比例函数进行换算,代入到拉伸模量和垂直加载方向上总位移变形量之间的定量关系式中,进而得到圆盘冲击劈裂试验中岩石拉伸模量的求解公式。该式包含冲击加载力、试样直径、试样厚度、岩石泊松比和试样中心平行加载方向上总位移变形量5个物理量,意义明确,运用简便,为求解圆盘劈裂试验拉伸弹性模量提供了一种新的方法。 相似文献
16.
砂岩拉伸过程中的能量耗散与损伤演化分析 总被引:4,自引:2,他引:4
岩石作为一种非均质的复杂地质材料,其力学响应表现出明显的非线性和各向异性特点。借助先进的试验测试系统,可以对岩石进行直接拉伸试验,从而在现有大量压缩试验的基础上进一步完善对岩石基本力学行为的研究。通过砂岩的循环拉伸试验研究发现,拉伸过程中外载所做的总功除了引起岩石弹性变形能的增大外,还有一部分被耗散掉从而导致岩石发生不可逆的损伤。在对能量耗散进行分析的基础上,可以建立岩石的损伤演化方程,并通过试验测定相应的参数指标。试验研究和理论分析表明,基于能量耗散分析建立的岩石损伤演化方程可以较好地描述岩石的损伤演化过程。 相似文献
17.
冲击载荷作用下岩石损伤的能量耗散 总被引:10,自引:5,他引:10
利用一级轻气炮进行平面撞击实验,测量砂岩试件组成的靶板中的应力-时间历程曲线;基于RaIlkinc-Hugoniot守恒方程,计算得到不同冲击荷载下岩石试件中的损伤能量耗散密度,为建立新的岩石动态损伤模型创造了条件。 相似文献
18.
裂缝长度对岩石动态断裂韧度测试值影响的研究 总被引:2,自引:2,他引:2
为了考察裂缝长度对试件动态断裂韧度测试值的影响,采用圆盘直径为80 mm变化裂缝长度的大理岩中心圆孔裂缝平台巴西圆盘试件,在霍普金森压杆系统上进行动态冲击劈裂试验。对不同裂缝长度试件动态试验时弹性压杆上测得的应变波形以及试件的断裂模式进行分析,用试验–数值的方法确定大理岩的动态断裂韧度。结果表明,在平均加载率为2.96×104 MPa·m1/2·s-1的条件下,大理岩动态断裂韧度均值是其静态断裂韧度均值的2.6倍,随着裂缝长度的增加,动态测试值没有静态测试值的变化显著,最后对与试件尺寸和构形无关的动态断裂韧度的确定方法进行讨论。 相似文献
19.
依据动载诱发冲击地压是动静组合加载下煤岩体结构失稳这一科学认识,采用改进的霍普金森杆,开展一维动静加载下组合煤岩动态破坏特性的试验研究.选取强度和碎片分维作为特征参数,采用4种典型轴压,进行不同应力波能量下的冲击试验.获得组合煤岩的动态强度和碎片分维随动静载荷的变化规律,从而揭示裂隙数目、煤岩结构特性及动静载荷对组合煤岩破坏失稳的影响.结果表明:组合煤岩试样的动态强度和碎片分维随应力波能量的增大而增大,随静载的增大呈现先增大后减小的趋势.含有裂隙越多的组合煤岩对高动载的抵抗能力越强,而破坏的剧烈程度越低,说明煤层卸压措施不但能增强煤岩体结构对高动载的抵抗能力,还能降低冲击发生的剧烈程度.煤岩体结构特性增强了煤层对动静载荷的抵抗能力以及煤层破坏的剧烈程度;同时结构特性削弱了高动载对煤层的作用效果,而加强了高静载的作用效果,其原因在于动、静载荷作用的时间尺度差异较大. 相似文献