首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In consequence of previous investigation of individual transparent conductive oxide (TCO) and absorber layers a study was carried out on hydrogenated amorphous silicon (a-Si:H) solar cells with diluted intrinsic a-Si:H absorber layers deposited on glass substrates covered with different TCO films. The TCO film forms the front contact of the super-strata solar cell and has to exhibit good electrical (high conductivity) and optical (high transmittance) properties. In this paper we focused our attention on the influence of using different TCO’s as a front contact in solar cells with structure as follows: Corning glass substrate/TCO (800, 950 nm)/p-type μc-Si:H (∼5 nm)/p-type a-Si:H (10 nm)/a-SiC:H buffer layer (∼5 nm)/intrinsic a-Si:H absorber layer with dilution R = [H2]/[SiH4] = 20 (300 nm)/n-type a-Si:H layer (20 nm)/Ag + Al back contact (100 + 200 nm). Diode sputtered ZnO:Ga, textured and non-textured ZnO:Al [3] and commercially fabricated ASAHI (SnO2:F) U-type TCO’s have been used. The morphology and structure of ZnO films were altered by reactive ion etching (RIE) and post-deposition annealing.It can be concluded that the single junction a-Si:H solar cells with ZnO:Al films achieved comparable parameters as those prepared with commercially fabricated ASAHI U-type TCO’s.  相似文献   

2.
Aluminum-doped zinc oxide (ZnO:Al) thin films were deposited on glass, polycarbonate (PC), and polyethylene terephthalate (PET) substrates by r.f. magnetron sputtering. The substrate dc bias voltage varied from 0 V to 50 V. Structural, electrical and optical properties of the films were investigated. The deposition rate of ZnO:Al films on glass substrate initially increased with the bias voltage, and then decreased with further increasing bias voltage. It was found that the best films on glass substrate with a low as 6.2 × 10− 4 Ω cm and an average transmittance over 80% at the wavelength range of 500-900 nm can be obtained by applying the bias voltage of 30 V. The properties of the films deposited on polymer substrate, such as PC and PET, have a similar tendency, with slightly inferior values to those on glass substrate.  相似文献   

3.
《Materials Letters》2007,61(4-5):1265-1269
Cold cathodes of carbon nanotubes (CNTs) were deposited on the glass substrate by the electrophoretic deposition (EPD) method. The cathodes were tested in the diode construction with the cathode–anode gap of 170 μm in vacuum. The emission characteristics of the CNTs film cathodes have as good properties as those by screen printing and better emission uniformity. The influence of the voltage between electrodes in the electrophoretic process of flat cold cathode fabrication on the uniformity of the CNTs film distribution was studied. The results indicate that the uniformity of CNTs film cathode by EPD depends on the voltage between electrodes during the electrophoretic deposition. The uniformity of CNTs film and optimized emission properties of the cathode have been achieved when the voltage is 25 V.  相似文献   

4.
The tunnelling properties in metal/diamond-like carbon (DLC)/semiconductor junctions and structural characteristics of thin DLC films produced using different electron beam conditions were studied. We show that under the same electron dose conditions, thicker DLC films were obtained using lower accelerating voltages (2 kV) than when using higher accelerating voltage (20 kV). However, under the settings used the thicker films showed worse insulating performance than the thinner films. We attribute this effect to the variation of tunnelling barrier height in DLC deposited using different accelerating voltages. DLC films with a tunnelling barrier height of up to 3.12 eV were obtained using a 20 kV electron-beam, while only 0.73 eV was achieved for 2 kV DLC films. The X-ray photoemission spectra of the C 1s core level in these films reveal components at 284.4 ± 0.1 eV and 285 ± 0.1 eV, which were identified as the sp2 and sp3 hybrid forms of carbon. The sp3/sp2 concentration ratio increased with increasing electron beam accelerating voltage. We show how this effect is responsible for the barrier height variation.  相似文献   

5.
Carbon nanotube (CNT) networked films have been grown by radiofrequency plasma enhanced chemical vapour deposition (RF-PECVD) technology onto low-cost alumina substrates, coated by nanosized Fe-catalyst for growing CNTs, to perform chemical detection of hazardous gases, at an operating sensor temperature in the range 25-150 °C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The carbon nanotubes were “forest-like” with ropes vertically-aligned to the substrate surface. A dense network of bundles of multiple tubes consisting of multi-walled carbon nanostructures appears with a maximum length of 7-10 μm and single-tube diameter varying in the range of 5-35 nm. Surface functionalizations of the vertically-aligned CNT networks with nominally 5 nm thick Pt-, Ru- and Ag-nanoclusters, prepared by magnetron sputtering, provide higher sensitivity for significantly enhanced gas detection of NO2, H2, ethanol and toluene up to a low limit of sub-ppm level. The measured electrical conductance of the functionalized CNTs upon exposures of a given oxidizing and reducing gas is modulated by a charge transfer model with p-type semiconducting characteristics. Functionalized CNT gas sensors exhibited better performances compared to unmodified CNTs, making them highly promising candidates for environmental air monitoring applications, at ppb-level of toxic gas detection.  相似文献   

6.
We studied the selective formation of Co catalyst particles as a function of indentation pressure. We subjected a Co (8 nm thickness)/Si substrate pre-annealed at 600 °C to indentation processing. The catalytic function was confirmed in the indentations by the selective growth of carbon nanotubes (CNTs) at 800 °C. The number density of CNTs against the indentation pressure was investigated against indentation loads for two types of indenter: a Berkovich indenter with a ridge angle of 115° and a Berkovich indenter with a ridge angle of 90°. The pressures above 7 GPa applied by the former indenter enhanced Co atomization acting as a catalyst function for CNT growth (35 CNTs in one indentation). In contrast to this, the number of CNTs was markedly reduced when the latter indenter was used with pressures less than 3 GPa. The pop-out phenomenon was observed in unloading curves at pressures above 7 GPa. These results indicate that metastable Si promotes the self-aggregation of catalyst particles (Co) leading to the selective growth of CNTs within indentations at pressures above 7 GPa.  相似文献   

7.
Transparent and conductive carbon nanotubes (CNTs)/polyurethane-urea (PUU) composite films were prepared by solvent evaporation-induced self-assembly (EISA). Pristine CNTs were treated with acids (H2SO4/HNO3 = 3:1, v:v), acylated with thionyl chloride, and purified after filtration. These acylated CNTs (0.05 wt.% in dimethylformamide, DMF) were deposited onto the 3-aminopropyl triethoxysilane (APTES)-modified glass substrate by DMF EISA at 100 °C with the withdrawal rate of 3 cm/h. The CNT layers of 200–400 nm thicknesses were transferred to the PUU films by solution casting or resin transfer molding (RTM) at ambient temperature. Optical transmittances of the composite films were 60–75% at 550 nm wavelength and their sheet resistances were 5.2 × 100–2.4 × 103 kΩ/square, and which varied significantly with type of CNTs and the transferring methods of CNT layers.  相似文献   

8.
T. Kumpika 《Thin solid films》2008,516(16):5640-5644
ZnO nanoparticle thin films were deposited on quartz substrates by a novel sparking deposition which is a simple and cost-effective technique. The sparking off two zinc tips above the substrate was done repeatedly 50-200 times through a high voltage of 10 kV in air at atmospheric pressure. The film deposition rate by sparking process was approximately 1.0 nm/spark. The ZnO thin films were characterized by X-ray diffraction, Raman spectroscopy, UV-vis spectrophotometry, and ionoluminescence at room temperature. The two broad emission peaks centered at 483 nm (green emission) and 650 nm (orange-red emission) were varied after two-step annealing treatments at 400-800 °C. Moreover, the electrical resistivity of the films was likely to be proportional to the peak intensity of the orange-red emission.  相似文献   

9.
H.K. Lin  R.C. Lin  C.H. Li 《Thin solid films》2010,518(24):7253-7257
Carbon nanotubes (CNTs) have potential as a transparent conductive material with good mechanical and electrical properties. However, carbon nanotube thin film deposition and etching processes are very difficult to pattern the electrode. In this study, transparent CNT film with a binder is coated on a PET flexible substrate. The transmittance and sheet resistance of carbon nanotube film are 84% and 1000 Ω/□, respectively. The etching process of carbon nanotube film on flexible substrates was investigated using 355 nm and 1064 nm laser sources. Experimental results show that carbon nanotube film can be ablated using laser technology. With the 355 nm UV laser, the minimum etched line width was 20 μm with a low amount of recast material of the ablated sections. The optimal conditions of laser ablation were determined for carbon nanotube film.  相似文献   

10.
Bismuth vanadate (BVO) thin films were fabricated on indium tin oxide (ITO) coated glass substrates using pulsed laser ablation technique and investigated their structural, optical and electrical properties. The use of the indium tin oxide coated glass substrate resulted in reducing the leakage current characteristics of crystalline BVO thin films. The X-ray diffraction (XRD) studies confirmed the monophasic nature of the post annealed (500 °C/1 h) films. The atomic force microscopy indicated the homogeneous distribution of crystallites in the as-deposited films. The as-deposited and the post annealed films were almost 90% transparent (380–900 nm) as confirmed by optical transmission studies. Dielectric constant of around 52 was attained accompanied by the low dielectric loss of 0.002 at 10 kHz for post annealed films. The leakage current of the post annealed BVO films on ITO coated glass substrates measured at room temperature was 8.1 × 10−8 A at an applied electric field of 33 kV/cm, which was lower than that of the films with platinum and SrRuO3 as the bottom electrodes.  相似文献   

11.
In-situ electron beam induced microstructural transformation experiments, leading to porosity in nanowires of ZnO, have been performed under a TEM operated at an electron accelerating voltage of 200 kV. For this purpose, nanowired (diameter: 20 to 80 nm) films of ZnO with thickness ~ 100 to 120 nm, were grown via metal-catalyst free-vapor phase mechanism. The evolved porosity (pore size about 2 to 20 nm) in nanowires, under electron beam irradiation, has been attributed to different bond-breaking phenomena at molecular Zn-O. Such nanoporous objects of ZnO are beneficial for various optical and sensing devices.  相似文献   

12.
We report room temperature measurements of current vs. voltage (I–V) from self-assembled Fe porphyrin [Fe(III) 5,15-di[4-(s-acetylthio)phenyl]-10,20-diphenyl porphine] molecular layers formed on annealed gold crystal facets on glass substrates. I–V curves were measured using an atomic force microscope with a conductive platinum tip. We observed a rectifier effect that shows asymmetric I–V curves from a monolayer of molecules. The majority rectification ratios at ±1 V obtained from hundreds of I–V lie in between 20 and 200, with the highest up to 9000. This is in contrast to the symmetric I–V curves measured from a few nm thick multilayer molecular islands. We contribute the observed rectification in ultrathin FeP molecular layers from asymmetric Schottky barriers that result from molecules in different bonding strengths to electrodes of gold and platinum.  相似文献   

13.
定向碳纳米管阵列在石英玻璃基底上的模板化生长研究   总被引:5,自引:0,他引:5  
分别以带有刻痕的石英玻璃和溅射过Au膜的石英玻璃为生长基底,通过催化裂解二茂铁和二甲苯混合物的方法,在基底上制备出了模板化的定向碳纳米管(CNT)阵列,扫描电镜(SEM)和透射电镜(TEM)观察表明:在这两种基底上生长的定向碳纳米管阵列的模板化程度都很高,其中的碳纳米管多为直径在20~50nm的多壁管(MWNT),且具有很好的定向性。本文还分析、对比了基底材料对定向碳纳米管生长的影响,初步探讨了定向碳纳米管模板化生长的形成机制。  相似文献   

14.
High density Au nanostructures were fabricated using polystyrene-block-polymethylmethacrylate (PS-b-PMMA) copolymer on glass substrate for the preparation of electrode materials with good stability, high transparency and excellent conductivity. A 1 wt.% polymer solution in toluene was spin coated on glass substrate. Samples were baked for 48 h at 200 °C with a continuous flow of Ar. Patterned polymer film was obtained by removing the PMMA region through exposing ultraviolet irradiation and rinsing in acetic acid. Au thin films with several thicknesses were then deposited onto the patterned glass substrates by thermal evaporation or sputtering. Removing PS cylinders by sonicating in acetone resulted in Au nanopattern on glass substrates. The connecting gold film acts as conductor while the holes allow light pass through it and helps to be transparent. The transmittance with Au film thickness of 7 nm and 4 nm was found to be about 63% and 70%, respectively. The resistivity was in the range 10− 5 Ω cm-10− 6 Ω cm which is comparable with ITO (10− 3 Ω cm-10− 4 Ω cm).  相似文献   

15.
Y.S. Kim 《Vacuum》2008,82(6):574-578
Transparent and conducting tin-doped indium oxide (ITO) and ITO/Au multilayered films were prepared on polycarbonate (PC) substrates by magnetron sputtering without intentional substrate heating. In order to consider the influence of the Au thickness on the optoelectrical properties and structure of ITO/Au films, the thickness of the Au underlayer was varied from 5 to 20 nm. The optoelectrical properties of the films were quite dependent on the Au film thickness. The lowest sheet resistance of 11 Ω/sq. and an optical transmittance of 61% with respect to air was obtained from ITO (95 nm)/Au (5 nm) films. Thin film crystallinity was also affected by the presence of the Au underlayer and varied with the thickness of the Au films. In X-ray diffraction (XRD) spectra, ITO films did not show any characteristic diffraction peak, while ITO/Au films with a 5-nm Au underlayer showed a characteristic diffraction peak. From the figure of merit, it can be concluded that the most effective Au thickness in ITO/Au films is 5 nm.  相似文献   

16.
Joo J  Chow BY  Jacobson JM 《Nano letters》2006,6(9):2021-2025
This Letter describes a method to generate nanometer scale patterns on insulating substrates and wide band gap materials using critical energy electron beam lithography. By operating at the critical energy (E2) where a charge balance between incoming and outgoing electrons leaves the surface neutral, charge-induced pattern distortions typically seen in e-beam lithography on insulators were practically eliminated. This removes the need for conductive dissipation layers or differentially pumped e-beam columns with sophisticated gas delivery systems to control charging effects. Using a "scan square" method to find the critical energy, sub-100 nm features in 65 nm thick poly(methyl methacrylate) on glass were achieved at area doses as low as 10 microC/cm2 at E2 = 1.3 keV. This method has potential applications in high-density biochips, flexible electronics, and optoelectronics and may improve the fidelity of low voltage e-beam lithography for parallel microcolumn arrays.  相似文献   

17.
《Vacuum》2012,86(3):246-249
We report the fabrication and electrical characteristics of high-performance amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with a polymer gate dielectric prepared by spin coating on a glass substrate at different oxygen partial pressure values. The transmittance of the deposited polymer film was greater than 90% at 600 nm a-IGZO thin films were deposited on glass substrates using RF magnetron sputtering at different oxygen partial pressure values. The a-IGZO TFTs were prepared by rapid thermal annealing at 350 °C for 10 min at a 0.2% oxygen partial pressure. It was observed that a-IGZO TFTs with an active channel layer exhibited enhanced mode operation, a threshold voltage of 1 V, an on-off current ratio of 103, and a field-effect mobility of 18 cm2/Vs.  相似文献   

18.
We report the fabrication and electrical characteristics of high-performance amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with a polymer gate dielectric prepared by spin coating on a glass substrate at different oxygen partial pressure values. The transmittance of the deposited polymer film was greater than 90% at 600 nm a-IGZO thin films were deposited on glass substrates using RF magnetron sputtering at different oxygen partial pressure values. The a-IGZO TFTs were prepared by rapid thermal annealing at 350 °C for 10 min at a 0.2% oxygen partial pressure. It was observed that a-IGZO TFTs with an active channel layer exhibited enhanced mode operation, a threshold voltage of 1 V, an on-off current ratio of 103, and a field-effect mobility of 18 cm2/Vs.  相似文献   

19.
Transparent conductive oxide/metal/oxide, where the oxide is MoO3 and the metal is Cu, is realized and characterized. The films are deposited by simple joule effect. It is shown that relatively thick Cu films are necessary for achieving conductive structures, what implies a weak transmission of the light. Such large thicknesses are necessary because Cu diffuses strongly into the MoO3 films. We show that the Cu diffusion can be strongly limited by sandwiching the Cu layer between two Al ultra-thin films (1.4 nm). The best structures are glass/MoO3 (20 nm)/Al (1.4 nm)/Cu (18 nm)/Al (1.4 nm)/MoO3 (35 nm). They exhibit a transmission of 70% at 590 nm and a resistivity of 5.0 · 10− 4 Ω cm. A first attempt shows that such structures can be used as anode in organic photovoltaic cells.  相似文献   

20.
We fabricated electron-only tris (8-hydroxyquinoline) aluminum (Alq3) single-layer devices with a device structure of glass substrate/MgAg anode (100 nm)/Alq3 layer (100 nm)/metal cathode (100 nm), and systematically varied the work functions (WF) of the metal cathodes from WF = − 1.9 (Cs) to − 2.9 (Ca), − 3.8 (Mg), − 4.4 (Al), − 4.6 (Ag), and − 5.2 eV (Au) to investigate how electron injection barriers at the cathode/Alq3 interfaces influence their current density–voltage (JV) characteristics. We found that current densities at a certain driving voltage decrease and the temperature dependence of JV characteristics of the devices gradually becomes weaker as the work functions of the metal cathodes are decreased. The device with the highest-work-function Au cathode exhibited virtually temperature-independent JV characteristics, suggesting that a current flow mechanism of this device is mainly controlled by electron tunneling injection at the Au/Alq3 interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号