首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NBR/PVC/OMMT纳米复合材料的结构与性能研究   总被引:1,自引:0,他引:1  
采用乳液共沉法和直接混炼法制备NBR/PVC/有机蒙脱土(OMMT)纳米复合材料,研究纳米复合材料的硫化特性、微观结构、动态力学性能和热稳定性.结果表明,OMMT能够显著促进NBR的硫化反应,使NBR/PVC/OMMT纳米复合材料的焦烧时间和正硫化时间明显缩短;乳液共沉法和直接混炼法NBR/PVC/OMMT纳米复合材料是插层型纳米复合材料,乳液共沉法NBR/PVC/OMMT纳米复合材料中的OMMT分散更为均匀,其储能模量、玻璃化温度和热分解温度均高于NBR/PVC共混物和直接混炼法NBR/PVC/OMMT纳米复合材料,具有较好的动态力学性能和热稳定性.  相似文献   

2.
以丁腈橡胶(NBR)和氯丁橡胶(CR)为主体材料,通过添加云母粉、中空玻璃微珠(HGB)、蒙脱土(MMT)制备隔声阻尼NBR/CR复合材料,并利用正交试验研究NBR/CR并用比、云母粉用量、HGB用量、MMT用量对NBR/CR复合材料阻尼性能和隔声性能的影响,确定NBR/CR复合材料的优化配方组合。结果表明:对于NBR/CR复合材料的最大损耗因子(tanδmax),其影响因素的主次顺序为NBR/CR并用比、HGB用量、云母粉用量、MMT用量;对于NBR/CR复合材料的有效阻尼温域宽度,其影响因素的主次顺序为NBR/CR并用比、云母粉用量、MMT用量、HGB用量;对于NBR/CR复合材料的平均隔声量,其影响因素的主次顺序为HGB用量、云母粉用量、MMT用量、NBR/CR并用比;NBR/CR复合材料的优化配方组合为:NBR/CR并用比 70/30,云母粉用量 10份,HGB用量 12份,MMT用量 10份。  相似文献   

3.
在丁腈橡胶(NBR)中添加受阻酚AO-80和不同用量的炭黑N 220,制备了NBR/AO-80/N220复合材料,研究了复合材料的热性能、动态力学性能、物理机械性能和热老化性能。结果表明,NBR/AO-80/N220复合材料的玻璃化转变温度与NBR/AO-80复合材料相当,均高于纯NBR,且损耗峰峰值高于1.19,有效阻尼温域(损耗因子不小于0.3)为36℃左右,具有良好的阻尼性能;NBR/AO-80/N220复合材料的储能模量(E′)大于NBR/AO-80复合材料,且随着N 220用量的增加,E′逐渐增大,NBR/AO-80/N220复合材料的拉伸强度、100%定伸应力、300%定伸应力和撕裂强度均逐渐提高,N220的最佳用量为30份;NBR/AO-80/N220复合材料具有良好的耐热老化性能。  相似文献   

4.
淀粉/NaAA/NBR复合材料的制备与吸水性能研究   总被引:1,自引:0,他引:1  
运用乳液共沉法制备淀粉/NBR复合物,通过氢氧化钠和丙烯酸的中和反应,在NBR中原位合成丙烯酸钠(NaAA),制备淀粉/NaAA/NBR复合材料,并对复合材料物理性能和吸水性能进行研究。结果表明,与直接添加NaAA的淀粉/NaAA/NBR复合材料相比,原位合成NaAA的淀粉/NaAA/NBR复合材料物理性能较好,吸水性能较差;随着浸水时间延长和浸水温度升高,直接添加NaAA的淀粉/NaAA/NBR复合材料吸水体积膨胀率增大,原位合成NaAA的淀粉/NaAA/NBR复合材料吸水体积膨胀率先增大后减小,前者吸水性能较好。  相似文献   

5.
将制革工艺中的削匀革屑(LS)与丁腈橡胶(NBR)混炼并压板制备成复合材料(NBR/LS),通过测定复合材料物理力学性能考察工艺条件对材料性能的影响。分别对NBR纯胶和NBR/LS复合材料的热性能进行了表征。测试结果表明:NBR/LS复合材料制备中压板时间、温度和革屑含量均对NBR/LS复合材料有较大影响;最佳力学性能出现在压板时间为30 min,温度为150℃,革屑用量为15份的工艺条件下;革屑的加入使得NBR的玻璃化转变温度(Tg)从-33.6℃升高至-31.0℃,复合材料的tanδ峰值和损耗模量明显降低;NBR/LS复合材料比NBR纯胶有较好的热稳定性能。  相似文献   

6.
采用湿法混炼制备了丁腈橡胶/高岭土(NBR/Kaolin)复合材料,同时与传统干法混炼进行对比,研究了NBR/Kaolin复合材料的硫化特性、流变特性以及力学性能。结果表明,湿法混炼得到的NBR/Kaolin复合材料的交联程度较大,硫化时间较短,拉伸强度和断裂伸长率更优异,其中拉伸强度提升了147%、断裂伸长率提升了36%。通过专门设计的橡胶加工分析(RPA)测试程序测定了NBR/Kaolin复合材料的流变特性,证明了湿法混炼工艺使NBR和Kaolin之间的相互作用更强,对应的NBR/Kaolin复合材料的力学性能也更加优异。  相似文献   

7.
在结合丙烯腈量不同的丁腈橡胶(NBR)中加入受阻酚AO-80和炭黑,制备了NBR/AO-80/炭黑(NBR/AO-80/CB)复合材料,用差示扫描量热仪、动态力学分析仪及物理机械性能测试等手段对复合材料的热性能、动态力学性能及物理机械性能进行了研究.结果表明,与纯NBR硫化胶相比,NBR/AO-80/CB复合材料的玻璃...  相似文献   

8.
邓月义  代云水  况波  赵树高 《塑料》2007,36(5):84-87
将NBR、PVC及纳米CaCO3熔融复合以增韧PVC/纳米CaCO3复合材料.研究了复合材料的力学性能、流变性能、热性能及微观形态.结果显示NBR对PVC/纳米CaCO3具有增韧效果,材料的断裂伸长率明显增大,PVC/NBR/nano-CaCO3为100/12/8时冲击强度最大,达到了30kJ/m2,比对应的单独纳米CaCO3增韧的PVC提高了大约27%.NBR能降低PVC/CaCO3复合材料的熔体黏度,复合材料加工性能改善.同时NBR的加入使得复合材料的玻璃化转变温度降低,热稳定性变差.扫描电镜照片显示,PVC/NBR/nano-CaCO3为100/12/8时,NBR的加入提高了CaCO3的纳米级分散程度,冲击断面出现了纤维状形变,使得复合材料的冲击强度提高.  相似文献   

9.
复配改性黏土/丁腈橡胶纳米复合材料的结构及性能   总被引:1,自引:0,他引:1  
用不同阴离子表面活性剂十二烷基磺酸钠(SDS)和十二烷基苯磺酸钠(SDBS)与阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)复配改性无机黏土,制备了有机改性黏土/丁腈橡胶(NBR)纳米复合材料,并表征了有机黏土与纳米复合材料,考察了不同表面活性剂及配比对纳米复合材料物理机械性能的影响。结果表明,CTAB/SDS复配改性黏土/NBR纳米复合材料的层间距比CTAB改性黏土/NBR纳米复合材料增加了1.15 nm,具有更多的插层结构,橡胶基体中黏土颗粒分布细致、均匀,且黏土片层间无聚集体存在;CTAB/SDS复配改性黏土/NBR纳米复合材料的物理机械性能优于CTAB/SDBS复配改性黏土/NBR纳米复合材料及CTAB改性黏土/NBR纳米复合材料,且当CTAB/SDS(质量比)为4∶2时,纳米复合材料的拉伸强度、撕裂强度及扯断伸长率出现最大值,其中,拉伸强度和撕裂强度较CTAB改性黏土/NBR纳米复合材料分别提高了62.7%和12.3%。  相似文献   

10.
罗亦飞  臧原  姚居峰  吴友平 《橡胶工业》2009,56(11):654-658
采用共沉法和直接混合法制备淀粉/NBR复合材料,并对其性能进行对比研究.结果表明,与直接混合法制备的淀粉/NBR复合材料相比,共沉法制备的淀粉/NBR复合材料的拉伸强度和撕裂强度提高,淀粉在NBR中的分散性变好且两者间有一定的界面结合;随着淀粉用量的增大,共沉法制备的淀粉/NBR复合材料中淀粉的分散性变差,出现团聚现象,但复合材料的耐油性能提高.  相似文献   

11.
采用十六烷基三甲基溴化铵对二硫化钼进行改性,通过乳液法和熔体法制备改性二硫化钼/丁腈橡胶(NBR)复合材料,并对其物理性能和耐磨性能进行研究。结果表明:改性二硫化钼/NBR复合材料的物理性能和耐磨性能好于未改性二硫化钼/NBR复合材料;与熔体法相比,乳液法制备的改性二硫化钼/NBR复合材料的物理性能和耐磨性能更好。  相似文献   

12.
使用经间苯二酚-甲醛-胶乳(RFL)体系处理及未处理的短切芳纶纤维(AF)和尼龙纤维(NF)分别与丁腈橡胶(NBR)制备复合材料,研究了纤维种类和表面处理对复合材料的性能,尤其是力学性能和耐磨性的影响。结果表明,与NF/NBR复合材料相比,AF/NBR复合材料的硬度和模量较高,但拉伸强度和扯断伸长率较低,这是由于AF与橡胶间较弱的相互作用及较大的模量差所导致的。对纤维进行RFL处理后,AF/NBR和NF/NBR复合材料的扯断伸长率分别提高297%和28%,前者的拉伸强度提高了30%,这可归因于RFL层对纤维-橡胶界面作用的提升。此外,AF/NBR复合材料的耐磨性较NF/NBR复合材料更好;RFL处理可通过改善NF与NBR的界面作用力提高复合材料的耐磨性,但降低AF/NBR复合材料的耐磨性,这是由于RFL的引入使后者硬度下降所致。  相似文献   

13.
采用乳液复合法制备水滑石(LDHs)/丁腈橡胶(NBR)纳米复合材料,并对其结构和性能进行研究。结果表明:复合材料中LDHs均匀分散在NBR基体中;与NBR胶料相比,LDHs/NBR复合材料的物理性能和气体阻隔性能明显提高;当LDHs/NBR用量比为1/20且LDHs用量为1份时,LDHs/NBR复合母胶/溴化丁基橡胶并用胶的气体阻隔性能较好。  相似文献   

14.
雷云霄  王稚阳 《橡胶工业》2018,65(4):389-393
天然橡胶(NR)与丁腈橡胶(NBR)共混,共混胶兼并NR物理机械性能及NBR耐油性能,但炭黑补强/NR/NBR橡胶复合材料物理机械性能相比炭黑补强NR橡胶复合材料差。在炭黑补强/NR/NBR橡胶复合材料中,加入碳酸钙晶须旨在增强复合材料物理机械性能,提高其使用范围。本文采用钛酸酯偶联剂对碳酸钙晶须进行改性,研究改性后碳酸钙晶须对炭黑/ NR/ NBR橡胶复合材料性能的影响。结果表明:钛酸酯偶联剂改性后的碳酸钙晶须,表面性能改变,有效提高了碳酸钙晶须与炭黑/NR/NBR橡胶复合材料的相容性。当碳酸钙晶须用量为4份时,复合材料的综合性能最佳,有效改善复合材料Payne效应。  相似文献   

15.
选用天然橡胶(NR)、丁腈橡胶(NBR)、氯化丁基橡胶(CIIR)和丁基橡胶为基体,制备4种高性能橡胶复合材料,并用于高阻尼桥梁隔震支座样品制备。结果表明:NBR/AO80和NR/NBR/AO80复合材料的硬度、拉伸强度和拉断伸长率满足桥梁支座用橡胶材料的要求;NBR/AO80,NR/NBR/AO80和CIIR/石油树脂复合材料在与支座的工作环境温度相匹配的温域内表现出良好的阻尼性能;应用NR/NBR/AO80复合材料制备的橡胶支座样品,其竖向刚度、水平等效刚度和等效阻尼比符合桥梁支座用橡胶材料国家标准要求。  相似文献   

16.
通过在丁腈橡胶(NBR)/氯化聚丙烯(CPP)橡塑复合材料中添加协同阻燃剂三氧化二锑,制备了阻燃型NBR/CPP橡塑复合材料,考察了三氧化二锑用量对NBR/CPP橡塑复合材料硫化特性、力学性能和燃烧性能的影响。实验结果表明:三氧化二锑的加入没有降低NBR/CPP橡塑复合材料的加工性能;当三氧化二锑用量为10.0份时,NBR/CPP橡塑复合材料的拉伸强度、300%定伸应力和邵氏硬度分别增加了15.7%、112%和10.9%;复合材料的氧指数(LOI)随三氧化二锑用量的增加逐渐增大,当三氧化二锑用量为2.5份时,复合材料氧指数为27.4%,达到自熄级阻燃效果。  相似文献   

17.
采用乳液法和机械共混法制备有机蒙脱土(OMMT)/NR/NBR复合材料,并对其微观结构、物理性能、动态力学性能和耐油性能进行研究.结果表明:大多数OMMT片层以纳米尺寸均匀分散在NR基体中;随着OMMT用量的增大,OMMT/NR/NBR复合材料物理性能和耐油性能提高;与NR /NBR并用胶相比,OMMT/NR/NBR纳米复合材料具有更低的滚动阻力.  相似文献   

18.
石墨/二硫化钼/丁腈橡胶复合材料的性能   总被引:1,自引:0,他引:1  
采用机械共混法制备了石墨/二硫化钼(MoS2)/丁腈橡胶(NBR)复合材料,考察了石墨和MoS2用量对复合材料物理机械性能及摩擦性能的影响,并用扫描电子显微镜表征了填料在橡胶基体中的分散情况。结果表明,石墨/MoS2/NBR复合材料的拉伸强度、撕裂强度和邵尔A硬度均高于石墨/NBR复合材料和MoS2/NBR复合材料,当添加10份石墨和7份MoS2时,复合材料的物理机械性能最佳,且填料在橡胶基体中的分散性最好,摩擦因数达到最小值0.7。  相似文献   

19.
研究了石墨/炭黑填充的NBR/EPDM导电复合材料力学性能、动态力学性能和压阻、温阻特性。结果表明,随NBR用量的减少,复合材料拉伸强度、撕裂强度和拉断伸长率均降低;与纯胶相比,填料在NBR/EPDM中分散性变差,复合材料Payne效应和损耗因子都增大。电阻率测试结果表明,NBR/EPDM并用胶电阻率明显低于纯胶;恒温下其电阻率随压力的增大先减小后增大;恒压下其电阻率随温度的升高而减小;NBR/EPDM并用比不同时,复合材料电阻率随压力、温度的变化趋势不尽相同。  相似文献   

20.
制备了炭黑增强的受阻酚AO-80/氯化丁基橡胶(CIIR)/丁腈橡胶(NBR)复合材料,利用扫描电镜、动态力学分析仪、力学性能测试等手段研究了该复合材料的微观形态、力学性能、动态力学性能和阻尼性能及其关系。结果表明,受阻酚AO-80与CIIR/NBR共混胶的相容性良好。AO-80/CIIR/NBR复合材料呈现2个玻璃化转变温度,分别对应于CIIR相和NBR相。随着复合材料中AO-80用量的增加,NBR相的玻璃化转变温度大幅度向高温方向移动,其最大损耗因子从1.24提高到2.02,损耗峰面积不断增大,显示出优异的阻尼性能。炭黑的加入可有效提高AO-80/CIIR/NBR复合材料的力学性能,但其损耗因子明显降低。综合考虑阻尼性能和力学性能,复合材料中的炭黑用量以30份(质量)为宜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号