首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of the cyclin D-dependent kinase Cdk6 bound to the p19 INK4d protein has been determined at 1.9 A resolution. The results provide the first structural information for a cyclin D-dependent protein kinase and show how the INK4 family of CDK inhibitors bind. The structure indicates that the conformational changes induced by p19INK4d inhibit both productive binding of ATP and the cyclin-induced rearrangement of the kinase from an inactive to an active conformation. The structure also shows how binding of an INK4 inhibitor would prevent binding of p27Kip1, resulting in its redistribution to other CDKs. Identification of the critical residues involved in the interaction explains how mutations in Cdk4 and p16INK4a result in loss of kinase inhibition and cancer.  相似文献   

2.
Neurodegeneration and cell death in Alzheimer's disease might be associated with aberrant proliferative mechanisms and activation of cell-cycle related events. We reported previously on the elevated expression of the cyclin dependent kinase inhibitor p16INK4a in Alzheimer's disease closely associated with neurofibrillary degeneration. In the present study, we demonstrate that other members of the INK4-family of cyclin dependent kinase inhibitors such as p15INK4b, p18INK4c and p19INK4d that bind directly to cdk4/6 or to complexes of cdk4/6 with D-type cyclins are all elevated. In contrast, no indication of altered expression of the cyclin dependent kinase inhibitors p21Cip1 and p27Kip1 were observed. Inhibitors of the INK4-family were strongly expressed in tangle-bearing neurones and neuritic components of plaques. A much lower expression was also seen in astrocytes. These findings add further evidence to the suggestion that a dysfunction of cell cycle regulation is of critical importance in the pathomechanism of Alzheimer's disease.  相似文献   

3.
Terminal differentiation of many cell lineages involves an exit from the mitotic cycle and entry into, and maintenance of, a permanent state of G1 arrest. We found that during terminal differentiation of mouse 3T3-L1 preadipocytes, the level of cyclin-dependent kinase 4 (CDK4) remained constant, but the subunit composition of the CDK4 complex underwent a dynamic rearrangement. As 3T3-L1 cells differentiated, the levels of cyclin D1 and cyclin D1-CDK4 complexes declined to negligible levels. Meanwhile, cyclins D2 and D3 levels and their associations with CDK4 increased transiently and persistently, respectively, with cyclin D3 becoming the predominant cyclin partner of CDK4 in mature adipocytes. At least five CDK inhibitors are expressed during the differentiation program of 3T3-L1 cells. Both p15INK4b and p16INK4a continuously declined to undetectable levels immediately after differentiation induction. p21 was transiently expressed during the exit of 3T3-L1 cells from mitotic clonal expansion and then decreased to undetectable levels in mature adipocytes. The level of p27KiP1 and p27-CDK4 complexes remain high during differentiation and in mature adipocytes. Distinctly, there is a remarkable induction of p18INK4c mRNA and protein that was not seen in the closely related nondifferentiating 3T3-C2 cell line, suggesting that p18 induction in 3T3-L1 cells is related to cell differentiation, not cell cycle arrest. The pRb kinase activity of cyclin D3 and CDK4 was not detected in quiescent 3T3-L1 cells and was then induced as the cells entered the mitotic clonal expansion phase. Unexpectedly, cyclin D3 and CDK4 pRb kinase activity remained high after 3T3-L1 cells completed their mitotic division and was still readily detectable in mature adipocytes. Our study reveals an active regulation, rather than passive inhibition, of CDK4 activity during adipocyte differentiation. Two central features of this complex regulation are switching of activating cyclin D subunits and concurrent binding by the p18 and p27 CDK inhibitors.  相似文献   

4.
BACKGROUND: The four members of the INK4 gene family (p16(INK4a), p15(INK4b), p18(INK4c) and p19(INK4d)) inhibit the closely related cyclin-dependent kinases CDK4 and CDK6 as part of the regulation of the G1-->S transition in the cell-division cycle. Loss of INK4 gene product function, particularly that of p16(INK4a), is found in 10-60% of human tumors, suggesting that broadly applicable anticancer therapies might be based on restoration of p16(INK4a) CDK inhibitory function. Although much less frequent, defects of p19(INK4d) have also been associated with human cancer (osteosarcomas). The protein structures of some INK4 family members, determined by nuclear magnetic resonance (NMR) spectroscopy and X-ray techniques, have begun to clarify the functional role of p16(INK4a) and the dysfunction introduced by the mutations associated with human tumors. RESULTS: The crystal structure of human p19(INK4d) has been determined at 1.8 A resolution using multiple isomorphous replacement methods. The fold of p19(INK4d) produces an oblong molecule comprising five approximately 32-residue ankyrin-like repeats. The architecture of the protein demonstrates the high structural similarity within the INK4 family. Comparisons to other ankyrin-repeat-containing proteins (GABPbeta, 53BP2 and myotrophin) show similar structures with comparable hydrogen-bonding patterns and hydrophobic interactions. Such comparisons highlight the splayed beta-loop geometry that is specific to INK4 inhibitors. This geometry is the result of a modified ankyrin structure in the second repeat. CONCLUSIONS: Among the INK4 inhibitors, the highest amino acid sequence conservation is found in the helical stacks; this conservation creates a conserved beta-loop geometry specific to INK4 inhibitors. Therefore, in addition to models which predict that the conserved helix alpha6 is responsible for CDK inhibition, a binding mode whereby the loops of INK4 proteins bind to the CDKs should also be considered. A similar loop-based interaction is seen in the complex formed between the ankyrin-repeat-containing protein GABPbeta and_GABPalpha. This mode of binding would be consistent with the observation that p16(INK4a) is sensitive to deleterious mutations found throughout this tumor suppressor protein; these mutations probably destabilize the three-dimensional structure.  相似文献   

5.
We have investigated the expression of cyclins, cyclin dependent kinases (CDK), and CDK inhibitors (CKI) at the mRNA level in a panel of small-cell lung cancer (SCLC) cell lines in vitro and in vivo as xenografts in nude mice. The results showed that the cell lines expressed varying amounts of most cyclin and CDK's but only a few of the cell lines expressed cyclin D1 and/or D2 and some lacked expression of CDK6. Most cell lines expressed mRNA for the CKI's but two cell lines lacked expression of P15INK4B and p16INK4A. The mRNA expression differed for a few of the cell lines regarding cyclin D2 and CDK6 when in vitro and in vivo data were compared. Two of the cell lines that express the retinoblastoma (Rb) protein had no sign of a deregulated Rb pathway but further studies at the protein level are necessary to demonstrate whether these two cell lines should have a normal Rb pathway or whether they will join the majority of cell lines with deregulated Rb pathway.  相似文献   

6.
7.
8.
9.
This study examines in vivo the role and functional interrelationships of components regulating exit from the G1 resting phase into the DNA synthetic (S) phase of the cell cycle. Our approach made use of several key experimental attributes of the developing mouse lens, namely its strong dependence on pRb in maintenance of the postmitotic state, the down-regulation of cyclins D and E and up-regulation of the p57(KIP2) inhibitor in the postmitotic lens fiber cell compartment, and the ability to target transgene expression to this compartment. These attributes provide an ideal in vivo context in which to examine the consequences of forced cyclin expression and/or of loss of p57(KIP2) inhibitor function in a cellular compartment that permits an accurate quantitation of cellular proliferation and apoptosis rates in situ. Here, we demonstrate that, despite substantial overlap in cyclin transgene expression levels, D-type and E cyclins exhibited clear functional differences in promoting entry into S phase. In general, forced expression of the D-type cyclins was more efficient than cyclin E in driving lens fiber cells into S phase. In the case of cyclins D1 and D2, ectopic proliferation required their enhanced nuclear localization through CDK4 coexpression. High nuclear levels of cyclin E and CDK2, while not sufficient to promote efficient exit from G1, did act synergistically with ectopic cyclin D/CDK4. The functional differences between D-type and E cyclins was most evident in the p57(KIP2)-deficient lens wherein cyclin D overexpression induced a rate of proliferation equivalent to that of the pRb null lens, while overexpression of cyclin E did not increase the rate of proliferation over that induced by the loss of p57(KIP2) function. These in vivo analyses provide strong biological support for the prevailing view that the antecedent actions of cyclin D/CDK4 act cooperatively with cyclin E/CDK2 and antagonistically with p57(KIP2) to regulate the G1/S transition in a cell type highly dependent upon pRb.  相似文献   

10.
Loss-of-function mutations of p16(INK4a) have been identified in a large number of human tumors. An established biochemical function of p16 is its ability to specifically inhibit cyclin D-dependent kinases in vitro, and this inhibition is believed to be the cause of the p16-mediated G1 cell cycle arrest after reintroduction of p16 into p16-deficient tumor cells. However, a mutant of Cdk4, Cdk4(N158), designed to specifically inhibit cyclin D-dependent kinases through dominant negative interference, was unable to arrest the cell cycle of the same cells (S. van den Heuvel and E. Harlow, Science 262:2050-2054, 1993). In this study, we determined functional differences between p16 and Cdk4(N158). We show that p16 and Cdk4(N158) inhibit the kinase activity of cellular cyclin D1 complexes through different mechanisms. p16 dissociated cyclin D1-Cdk4 complexes with the release of bound p27(KIP1), while Cdk4(N158) formed complexes with cyclin D1 and p27. In cells induced to overexpress p16, a higher portion of cellular p27 formed complexes with cyclin E-Cdk2, and Cdk2-associated kinase activities were correspondingly inhibited. Cells engineered to express moderately elevated levels of cyclin E became resistant to p16-mediated growth suppression. These results demonstrate that inhibition of cyclin D-dependent kinase activity may not be sufficient to cause G1 arrest in actively proliferating tumor cells. Inhibition of cyclin E-dependent kinases is required in p16-mediated growth suppression.  相似文献   

11.
The cyclin-dependent kinase (CDK) inhibitor p21WAF1/CIP1 is a multidomain, multifunctional protein and a candidate tumor suppressor. Here, we show that, among rationally designed and tumor-associated mutants of human p21 ectopically expressed in U-2-OS cells, those that are selectively deficient in binding to either cyclin or CDK are partially impaired in inhibiting endogenous CDK activities but efficiently promote assembly of active cyclin D/CDK4(6) complexes. These results provide mechanistic insights into the p21-cyclin/CDK interplay in vivo and suggest a functional subclassification of tumor-specific aberrations of p21. Intriguingly, the subclass exemplified by the melanoma-derived N50S mutant may promote tumorigenesis, by both attenuating CDK-inhibitory function and concomitantly activating the proto-oncogenic cyclin D-dependent kinases.  相似文献   

12.
Plasma cell tumor induction in mice by pristane is under multigenic control. BALB/c mice are susceptible to tumor development; whereas DBA/2 mice are resistant. Restriction fragment length polymorphisms between BALB/c and DBA/2 for Cdkn2a(p16) and Cdkn2b(p15), and between BALB/c and Mus spretus for Cdkn2c(p18(INK4c)) were used to position these loci with respect to the Pctr1 locus. These cyclin-dependent kinase (CDK) inhibitors mapped to a 6 cM interval of chromosome 4 between Ifna and Tal1. C.D2-Chr 4 congenic strains harboring DBA/2 alleles associated with the Pctr1 locus contained DBA/2 "resistant" alleles of the CDK4/CDK6 inhibitors p16 and p15. On sequencing p16 and p18 cDNAs, two different allelic variants within ankyrin repeat regions of p16 were found between BALB/c and DBA/2 mice. By using an assay involving PCR amplification and restriction enzyme digestion, allelic variants were typed among several inbred strains of mice. One of the variants, G232A, was specific to two inbred strains, BALB/cAn and ABP/Le, of mice and occurred in a highly conserved amino acid in both human and rat p16. When tested with wild-type (DBA/2) p16, both A134C and G232A BALB/c-specific variants of p16 were inefficient in their ability to inhibit the activity of cyclin D2/CDK4 in kinase assays with retinoblastoma protein, suggesting this defective, inherited allele plays an important role in the genetic susceptibility of BALB/c mice for plasmacytoma induction and that p16(INK4a) is a strong candidate for the Pctr1 locus.  相似文献   

13.
14.
Successful gene therapy depends on stable transduction of hematopoietic stem cells. Target cells must cycle to allow integration of Moloney-based retroviral vectors, yet hematopoietic stem cells are quiescent. Cells can be held in quiescence by intracellular cyclin-dependent kinase inhibitors. The cyclin-dependent kinase inhibitor p15(INK4B) blocks association of cyclin-dependent kinase (CDK)4/cyclin D and p27(kip-1) blocks activity of CDK2/cyclin A and CDK2/cyclin E, complexes that are mandatory for cell-cycle progression. Antibody neutralization of beta transforming growth factor (TGFbeta) in serum-free medium decreased levels of p15(INK4B) and increased colony formation and retroviral-mediated transduction of primary human CD34(+) cells. Although TGFbeta neutralization increased colony formation from more primitive, noncycling hematopoietic progenitors, no increase in M-phase-dependent, retroviral-mediated transduction was observed. Transduction of the primitive cells was augmented by culture in the presence of antisense oligonucleotides to p27(kip-1) coupled with TGFbeta-neutralizing antibodies. The transduced cells engrafted immune-deficient mice with no alteration in human hematopoietic lineage development. We conclude that neutralization of TGFbeta, plus reduction in levels of the cyclin-dependent kinase inhibitor p27, allows transduction of primitive and quiescent hematopoietic progenitor populations.  相似文献   

15.
We have previously shown that there were differential and dramatic decreases of cyclin and cyclin-dependent kinase (CDK) activities in cardiomyocytes during the neonatal period. The activity of CDKs control cell cycle progression, and this activity is regulated positively and negatively by association of CDKs with cyclins and cyclin-dependent kinase inhibitors (CKIs), respectively. While the INK family (p15(INK4B)/p16(INK4A)/p18(INK4C)/p19(INK4D)) of CKIs is not detectable in hearts, the KIP/CIP family (p21(CIP1), p27(KIP1) and p57(KIP2)) of CKIs is detectable in most organs including the heart. Differential and dramatic changes of the KIP/CIP family (p21(CIP1), p27(KIP1) and p57(KIP2)) of CKIs were detected in rat hearts during development. The mRNA and protein levels of p21(CIP1) and p57(KIP2) were readily detectable in hearts at gestational and early postnatal periods and decreased thereafter. The mRNA levels of p27(KIP1) in ventricles were high during the gestational period, and did not change until day 30 postnatal, then were decreased slightly in 90-day-old rats. The protein levels of p27(KIP1) increased significantly in the early postnatal period, then were expressed persistently, although levels decreased slightly in the adult period. However, protein levels of p27(KIP1) in atria did not change during development. Variable immuno-staining patterns of p27(KIP1) were observed at different periods of development and in various locations in myocardium. During the gestational period, approximately 35-50% of myocardial cells in the cardiac wall were p27(KIP1) immuno-positive and were distributed diffusely. These p27(KIP1) immunopositive cells increased predominantly in endocardial and mid-portion areas of ventricular myocardium at the early postnatal period. This heterogenous pattern of p27(KIP1) protein expression persisted to adult hearts though the percentage of p27(KIP1) immuno-positive cells decreased slightly. High magnification revealed that more than 50% of adult cardiomyocytes were p27(KIP1) immuno-positive and that p27(KIP1) was located solely in nuclei. These results indicate that p27(KIP1) may be an important inhibitor of CDK activities in cardiomyocytes during early postnatal development and may block the re-entrance of adult cardiomyocytes into the cell cycle after injury.  相似文献   

16.
17.
Cyclin D1 dysregulation and differential inactivation of p16INK4a and Rb have been observed in human lung cancer. In chemically induced mouse lung tumors, the p16INK4a gene is a target of inactivation, and Rb is reduced at the mRNA level (Northern blot) although similar at the protein level (Western blot) when compared to normal lung tissues. The expression of cyclin D1, cdk4, p16INK4a, and Rb protein was examined by immunohistochemistry in 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced mouse lung tumors. Immunohistochemical staining revealed exclusive nuclear staining of both cyclin D1 and cdk4 that was light to moderate in normal mouse lung tissues, but intense in lung adenomas and adenocarcinomas. Western blot analysis confirmed the increased expression of cyclin D1 and cdk4 in lung tumors compared to normal lung. Immunohistochemical analyses of lung tumors showed focal areas which lacked p16INK4a staining. Expression of p16INK4a, as determined by RT-PCR, was variable in lung tumors. Mutations in p16INK4a were not found by SSCP analysis. Immunohistochemical analyses of normal lung tissues showed intense staining for Rb protein in alveolar epithelial cells and in other lung cell types; however, in the lung tumors the staining intensity was reduced and the distribution was altered. Expression of Rb was detected in normal lung tissues but was barely detectable by Northern blot hybridization in lung tumors. Western blot analysis indicated the presence of both hypophosphorylated and hyperphosphorylated Rb protein in lung tumors and in normal lung tissues. These results suggest that alterations in the cell cycle proteins, cyclin D1, cdk4, p16INK4a, and Rb, may play a role in the acquisition of autonomous growth by adenomas. Furthermore, they demonstrate the importance of immunohistochemical studies to examine expression in tissues that contain multiple cell types, such as the lung, and in tumors that by nature are heterogeneous.  相似文献   

18.
Interferon-alpha (IFN-alpha) has been used as therapy for the treatment of a variety of viral diseases and malignancies including multiple myeloma. The effectiveness of interferon-alpha in treating multiple myeloma, however, has been somewhat variable, and the mechanism(s) accounting for this is not well understood. As a means to examine the basis for the differential effectiveness of this cytokine, we have analyzed IFN-alpha-mediated modulation of the cell cycle in two human myeloma cell lines. These two cell lines, ANBL-6 and KAS-6/1, display dramatically different outcomes in response to this cytokine. Although IFN-alpha inhibited the growth of ANBL-6 cells by blocking cell cycle progression from G0/G1 to S phase, IFN-alpha stimulated cell cycle progression in KAS-6/1 cells. Moreover, the effects of IFN-alpha on cell cycle progression correlated with the phosphorylation status of the retinoblastoma protein. Of interest, IFN-alpha increased cyclin D2 expression and cyclin-dependent kinase activity in the KAS-6/1 cells but not in the ANBL-6 cells. To determine whether the differential effects of IFN-alpha on myeloma cell cycle progression could also result from differences in the expression of cyclin-dependent kinase inhibitors, we examined the effects of IFN-alpha on the induction of cyclin-dependent kinase inhibitors with broad regulatory function (p21 and p27) and those with specificity for G1-associated cyclin-cyclin-dependent kinase complexes (p15, p16, p18, and p19). Although we failed to detect an effect of IFN-alpha on expression levels of p21, p15, p16, or p18, IFN-alpha treatment of the ANBL-6 cell line resulted in induction of p19 expression, whereas it was without effect on the KAS-6/1 cell line. These results suggest that heterogeneity in IFN-alpha-mediated growth effects in myeloma cells correlates with differential induction of cyclin D2 and p19(INK4d) expression.  相似文献   

19.
We have studied the effect of retinoic acid on the expression of the neurotrophin receptors trkA, trkC, and p75 by neuroblasts and neurons at different axial levels along the embryonic mouse paravertebral sympathetic chain. In dissociated cultures of sympathetic neuroblasts, retinoic acid inhibited the developmental increase in trkA mRNA expression and the developmental decrease in trkC mRNA expression that normally occurs in these cells but did not affect p75 mRNA expression. At higher concentrations, retinoic acid also increased the proliferation of sympathetic neuroblasts. After sympathetic neuroblasts became postmitotic, retinoic acid no longer affected receptor expression. Studies with retinoic acid receptor agonists and antagonists indicated that the effects of retinoic acid on neurotrophin receptor expression were mediated mainly by alpha retinoic acid receptors, not beta or gamma receptors. The observation that alpha-antagonists increased trkA mRNA expression in intact sympathetic ganglion explants suggests that endogenous retinoic acid is a physiological regulator of trkA receptor expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号