共查询到20条相似文献,搜索用时 62 毫秒
1.
针对高光谱遥感图像训练样本较少、光谱维度较高、空间特征与频谱特征存在差异性而导致高光谱地物分类的特征提取不合理、分类精度不稳定和训练时间长等问题,提出了基于3D密集全卷积(3D-DSFCN)的高光谱图像(HSI)分类算法。算法通过密集模块中的3D卷积核分别提取光谱特征和空间特征,采用特征映射模块替换传统网络中的池化层和全连接层,最后通过softmax分类器进行分类。实验结果表明,基于3D-DSFCN的HSI分类方法提高了地物分类的准确率、增强了低频标签的分类稳定性。 相似文献
2.
3.
高光谱遥感数据挖掘若干基本问题的研究 总被引:1,自引:0,他引:1
面向高光谱遥感信息的特点,分析了高光谱遥感数据挖掘的形成和作用,在构建其框架体系与处理流程的基础上。探讨了可以发现的知识类型和典型的挖掘模式,并分析了一些主要挖掘算法和关键技术。最后对高光谱遥感数据挖掘潜在的应用方向进行了探讨。 相似文献
4.
5.
针对高光谱遥感影像的降维问题,提出一种高光谱影像地物分类方法:direct LDA子空间法。先采用直接线性判别分析(direct linear discriminant analysis, direct LDA)进行特征提取,然后在特征子空间中采用最短距离分类器进行地物分类。机载可见光/红外成像光谱仪(airborne visible/infrared imaging spectrometer,AVIRIS)的高光谱影像识别结果表明,该方法相比LDA子空间法和原空间法,可显著降低数据维数,提高识别率。 相似文献
6.
为降低高光谱影像的数据维数,提高地物分类识别效率,提出了一种地物分类方法——核直接线性判别分析(Kernel Direct Linear Discriminant Analysis,KDLDA)子空间法;并推导出类先验概率的一般形式下KDLDA的解。KDLDA子空间法先采用KDLDA提取遥感影像的非线性可分特征,然后在KDLDA子空间采用最小距离分类器进行分类识别。机载可见光/红外成像光谱仪(Airborne Visible/Infrared Imaging Spectrometer,AVIRIS)的高光谱影像识别结果表明,相比原空间法、LDA子空间法、直接线性判别分析(Direct Linear Discriminant Analysis,DLDA)子空间法、核线性判别分析(Kernel Linear Discriminant Analysis,KLDA)子空间法,KDLDA子空间法可显著提高识别效率。 相似文献
7.
8.
目的 在高光谱地物分类中,混合像元在两个方面给单标签分类带来了负面影响:单类地物在混入异类地物后,其光谱特征会发生改变,失去独特性,使类内差异变大;多类地物在混合比例加深的情况下,光谱曲线会互相趋近,使类间差异变小。为了解决这一问题,本文将多标签技术运用在高光谱分类中。方法 基于高光谱特性,本文将欧氏距离与光谱角有机结合运用到基于类属属性的多标签学习LIFT(multi-label learning with label specific features)算法的类属属性构建中,形成了适合高光谱多标签的方法。基于标签地位的不相等,本文为多标签数据标注丰度最大标签,并在K最近邻KNN(k-nearest neighbor)算法中为丰度最大的标签设置比其余标签更大的权重,完成对最大丰度标签的分类。结果 在多标签分类与单标签分类的比较中,多标签表现更优,且多标签在precision指标上表现良好,高于单标签0.5% 1.5%。在与其余4种多标签方法的比较中,本文多标签方法在2个数据集上表现最优,在剩余1个数据集上表现次优。在最大丰度标签的分类上,本文方法表现优于单标签分类,在数据集Jasper Ridge上的总体分类精度提高0.2%,混合像元分类精度提高0.5%。结论 多标签分类技术应用在高光谱地物分类上是可行的,可以提升分类效果。本文方法根据高光谱数据的特性对LIFT方法进行了改造,在高光谱多标签分类上表现优异。高光谱地物的多标签分类中,每个像元多个标签的地位不同,在分类中可以通过设置不同权重体现该性质,提升分类精度。 相似文献
9.
《计算机应用与软件》2018,(2)
高光谱遥感影像具有多源异质的属性特征,也面临着训练样本少、标记代价大的困难。拟提取空间形状、纹理等多种属性特征来构建多视图,开展基于异质多视图主动学习的高光谱地物分类研究。主要解决两个问题:1)提出一种新的基于多视图后验概率差异最小(MPPD)的样本查询策略。每个视图根据多元逻辑回归分类器预测样本的类别条件概率;根据全概率公式计算多视图下每个样本的后验概率;挑选后验概率差异最小的样本作为信息含量最大的样本。2)提出一种基于空间多尺度形状结构、以及纹理特征的异质多视图的构建方式。实验结果表明,提出的算法能够加快学习函数的收敛速度,以少量的信息含量大的标记样本来提高学习器的预测性能。 相似文献
10.
高光谱图像的有效压缩已经成为高光谱遥感领域研究的热点。提出了一种基于分类KLT( Karhunen-Loeve Transform)的高光谱图像压缩算法。该算法利用光谱信息对高光谱图像进行地物分类,根据相邻波段的相关性对高光谱图像进行波段分组。在地物分类与波段分组的基础上,对每组的每一类地物数据分别进行KL变换,利用EBCOT(Embedded Block Coding with Optimal Trtmcation)算法对所有主成分进行联合编码。实验结果表明,该算法能够取得优于JPEG2000以及DWT-JPEG2000的压缩性能,适合实现高光谱图像的有效压缩。 相似文献
11.
12.
13.
14.
15.
Many classification problems involve high dimensional inputs and a large number of classes. Multiclassifier fusion approaches
to such difficult problems typically centre around smart feature extraction, input resampling methods, or input space partitioning
to exploit modular learning. In this paper, we investigate how partitioning of the output space (i.e. the set of class labels) can be exploited in a multiclassifier fusion framework to simplify such problems and to yield
better solutions. Specifically, we introduce a hierarchical technique to recursively decompose a C-class problem into C_1 two-(meta) class problems. A generalised modular learning framework is used to partition a set of classes into two disjoint
groups called meta-classes. The coupled problems of finding a good partition and of searching for a linear feature extractor
that best discriminates the resulting two meta-classes are solved simultaneously at each stage of the recursive algorithm.
This results in a binary tree whose leaf nodes represent the original C classes. The proposed hierarchical multiclassifier framework is particularly effective for difficult classification problems
involving a moderately large number of classes. The proposed method is illustrated on a problem related to classification
of landcover using hyperspectral data: a 12-class AVIRIS subset with 180 bands. For this problem, the classification accuracies
obtained were superior to most other techniques developed for hyperspectral classification. Moreover, the class hierarchies
that were automatically discovered conformed very well with human domain experts’ opinions, which demonstrates the potential
of using such a modular learning approach for discovering domain knowledge automatically from data.
Received: 21 November 2000, Received in revised form: 02 November 2001, Accepted: 13 December 2001 相似文献
16.
17.
数据融合与数据挖掘相集成的自动目标识别系统 总被引:2,自引:0,他引:2
该文提出数据融合技术与数据挖掘技术相集成的海上目标自动识别系统体系结构,以及基于加权粗糙集模型的特征知识挖掘方法,并运用模糊神经网络技术进行目标识别。 相似文献
18.
概括了SAR图像中目标特点,分析了SAR图像目标识别主要采用的方法和存在不足,提出了一种综合的SAR目标识别框架。 相似文献
19.
20.
心理声学参数提取及其在目标识别中的应用 总被引:1,自引:0,他引:1
根据人耳听觉特性,研究了心理声学中人耳识别目标的重要特征参数在目标识别中的应用.针对无线电噪声和舰船辐射噪声,利用Zwicker理论提取心理声学参数中的特性响度和特性尖锐度作为识别特征,通过神经网络分类器分别对这两组噪声各三类进行分类识别研究.实验表明特性响度和特性尖锐度主要反映了目标的振幅特性,可以正确识别目标并具有较高的识别率.是有效的识别特征.由于特性响度和特性尖锐度反映目标的特性相同,利用遗传算法仅对特性响度特征进行优化选择.挑选出特性响度中的分类关键量,降低识别空间的维数,提高识别率. 相似文献