首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immune free-flow electrophoresis (IFFE) has been applied to the separation of peroxisomes (PO). IFFE is a modification of antigen-specific electrophoretic cell separation (ASECS), and combines the advantages of electrophoretic separation with the high selectivity of an immune reaction. It differs from the latter in the pH of the electrophoresis buffer, which was shifted from the physiological range (ASECS) to the pI of IgG molecules (pH approximately 8.0), thus further decreasing the mobility produced by the binding of a specific antibody. This enhances the mobility differences between IgG-coupled particles and those nondecorated, with resultant improved separation. We have now succeeded in isolating different subpopulations of PO by applying IFFE to heavy, light, and post-mitochondrial fractions separated by differential centrifugation of a rat liver homogenate. The obtained PO subfractions differed in their composition of matrix and membrane proteins, as revealed by immunoblotting. This indicates that they indeed represent distinct subpopulations of rat hepatic PO.  相似文献   

2.
The separation of functional early and late endosomes from other cellular compartments by free-flow electrophoresis (FFE) has been previously demonstrated in nonpolarized cells. Here, using 125I-labeled anti-secretory component antibodies ([125I]SC Ab) and FITC-labeled asialoorosomucoid (FITC-ASOR) as markers of the transcytotic and lysosomal pathway, respectively, we demonstrate the separation of three distinct endosome subpopulations from polarized rat hepatocytes. Internalization of both markers at 16 degrees C resulted in their accumulation in a common endosome compartment, indicating that both the transcytotic and the lysosomal pathways are arrested in the sorting early endosome at temperatures below 20 degrees C. After chase of the markers from early endosomes into the transcytotic or the degradative route at 37 degrees C, transcytotic endosomes carrying [125I]SC Ab migrated with an electrophoretic motility between early and late endosomes while late endosomes labeled with FITC-ASOR were deflected more towards the anode than early endosomes. These data indicate that in rat hepatocytes, the transcytotic and lysosomal pathways utilize a common (i.e. early endosomes) and two distinct endosome subpopulations (i.e. transcytotic endosomes, late endosomes) prior to delivering proteins for biliary secretion or lysosomal degradation, respectively.  相似文献   

3.
4.
5.
A concerted translational control is responsible for maintaining an iron level in the cytosol that is both adequate for the synthesis of iron-containing proteins and does not represent a danger to the cell. However, little is known about how iron level is controlled in the nucleus. Nuclei of rat liver take up iron from ferric citrate by a process that is dependent on ATP. This system shares several properties with known P-type ATPases, suggesting that a P-type ATPase in the nuclear membrane is responsible for iron transport. (i) Adenosine 5'-(beta,gamma-iminodiphosphate), a non-hydrolyzable ATP analogue, does not support iron uptake; (ii) the uptake is strongly inhibited by vanadate; (iii) there is an absolute requirement for Mg2+; and (iv) reagents that oxidize SH groups inhibit uptake, and this inhibition can be prevented by dithiothreitol. The energy of activation for the uptake (11.5 kcal/mol) and the Km for ATP (0.4 mM) are similar to values for other known cation transport ATPases. Inhibitors of Na+,K+-ATPase, sarcoplasmic reticulum Ca2+-ATPase, proton V-ATPase, and nuclear Ca2+-ATPase have no effect on uptake. Ferric citrate can be replaced by Fe-ATP as a source of iron for the transport system; however, two other stronger iron chelators, Tiron and desferrioxamine, completely inhibit the uptake. Taken together, these data strongly suggest that an Fe-ATPase, distinct from other known P-type ATPases, is responsible for iron transport in the nucleus.  相似文献   

6.
Free-flow micropuncture experiments were performed in male Sprague-Dawley rats undergoing moderate mannitol diuresis and infused with urate-containing solutions. The resulting plasma urate concentrations ranged from 37.5 +/- 2.4 to 601.2 +/- 23.8 muM. With urate loading, the fraction of filtered urate excreted in pelvic urine increased from 0.32 +/- 0.02 to 0.92 +/- 0.05 mu M, but net secretion was not observed. At normal urate levels net reabsorption occurred along superficial proximal tubules, whereas net secretion could be demonstrated at the highest plasma urate levels. Net movements of urate did not appear to occur across the walls of the lower segments of nephrons.  相似文献   

7.
We investigated the effects of 17 alpha-ethinylestradiol treatment of rats on various transport functions in isolated basolateral and canalicular liver plasma membrane vesicles. Both membrane subfractions were purified to a similar degree from control and cholestatic livers. Although moderate membrane lipid alterations were predominantly observed in basolateral vesicles, no change in basolateral Na+/K(+)-ATPase activity was found. Furthermore, while Na(+)-dependent taurocholate uptake was decreased by approximately 40% in basolateral vesicles, the maximal velocity of ATP-dependent taurocholate transport was decreased by 63% in canalicular membranes. In contrast, only minimal changes or no changes at all were observed for electrogenic taurocholate transport in "cholestatic" canalicular membranes and total microsomes, respectively. However, canalicular vesicles from cholestatic livers also exhibited marked reductions in ATP-dependent transport of S-(2,4-dinitrophenyl)glutathione and in Na(+)-dependent uptake of adenosine, while in the same vesicles HCO3-/SO4- exchange and Na+/glycine cotransport activities were markedly stimulated. These data show that in addition to the previously demonstrated sinusoidal transport abnormalities ethinylestradiol-induced cholestasis is also associated with multiple canalicular membrane transport alterations in rat liver. Hence, functional transport alterations at both polar surface domains might ultimately be responsible for the inhibitory effects of estrogens on the organic anion excretory capacity and on bile formation in rat liver.  相似文献   

8.
9.
The binding of cell-free activated glucocorticoid receptor-steroid complexes from HTC cells to various preparations of HTC and rat liver nuclei has been examined under conditions that did or did not support the nuclear translocation of macromolecules via nuclear pores. To the best of our knowledge, this is the first such study with functionally active isolated nuclei. Conventionally prepared HTC nuclei were found to be porous, as determined from their inability to exclude the fluorescent macromolecule phycoerythrin (PE) at 4 degrees C. Thus the nuclear binding of activated complexes to these nuclei can not involve nuclear translocation. Further studies, using established conditions with sealed nuclei prepared from rat liver, revealed that nuclear translocation of PE containing a covalently linked, authentic nuclear translocation sequence could be obtained at 22 degrees C, but not at 4 degrees C. However, under the same conditions, activated glucocorticoid complexes displayed equal levels of nuclear binding at both temperatures. We therefore conclude that the current translocation conditions with intact rat liver nuclei are not sufficient to reproduce the nuclear transport of glucocorticoid complexes observed in intact cells. The nuclear binding that was seen with intact rat liver nuclei was not affected by aurintricarboxylic acid, which selectively inhibits protein-nucleic acid interactions. The antibody AP-64, shown to be specific for amino acids 506-514 of the nuclear translocation sequence of the rat glucocorticoid receptor, inhibited the nuclear binding of activated complexes, apparently by blocking receptor access to the nuclear membrane. Collectively, these data argue that activated complex binding to nuclei capable of nuclear translocation involves only an association with nuclear membrane components such as nuclear pores. Thus this system, and these reagents, may be useful in future studies of activated complex binding to nuclear pores.  相似文献   

10.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytoplasm, on ATP-dependent calcium transport in the plasma membrane vesicles of rat liver was investigated. (Ca(2+)- Mg2+)-ATPase activity in the liver plasma membranes was significantly increased by the presence of regucalcin (0.1-0.5 microM) in the enzyme reaction mixture. This increase was completely inhibited by the presence of sulfhydryl group modifying reagent Nethylmaleimide (5.0 mM NEM) or digitonin (0.04%), which can solubilize the membranous lipids. When ATP-dependent calcium uptake by liver plasma membrane vesicles was measured by using 45CaCl2, the presence of regucalcin (0.1-0.5 microM) in the reaction mixture caused a significant increase in the 45Ca2+ uptake. This increase was about 2-fold with 0.5 microM regucalcin addition. An appreciable increase was seen by 5 min incubation with regucalcin addition. The regucalcin-enhanced ATP-dependent 45Ca2+ uptake by the plasma membrane vesicles was completely inhibited by the presence of NEM (5.0 mM) or digitonin (0.04%). These results demonstrate that regucalcin activates (Ca(2+)-Mg2+)-ATPase in the liver plasma membranes and that it can stimulate ATP-dependent calcium transport across the plasma membranes.  相似文献   

11.
12.
Y Inoue  BP Bode  WW Souba 《Canadian Metallurgical Quarterly》1994,116(2):356-65; discussion 365-6
BACKGROUND: Endotoxemia stimulates amino acid consumption by the liver, but the regulation of this response is poorly understood. We studied the effect of Escherichia coli endotoxin (lipopolysaccharide) on hepatic carrier-mediated plasma membrane amino acid transport and the role of the cytokine tumor necrosis factor-alpha (TNF) in regulating this transport activity. METHODS: We investigated the activities of the Na(+)-dependent amino acid transport systems A, ASC, and N in hepatic plasma membrane vesicles prepared from rats treated with endotoxin in vivo. Vesicle purity and functionality were evaluated by assaying marker enzymes and by the presence of classic overshoots. RESULTS: Endotoxin treatment did not alter sodium transport but resulted in time- and dose-dependent 6-fold (system A), 3.5-fold (system N), and 3-fold (system ASC) increases in transport activity secondary to an increase in carrier maximum velocity. Lipopolysaccharide treatment did not alter transporter affinity or plasma membrane sodium transport. Transport activity increased within 2 hours of endotoxin administration, peaked at 4 hours after exposure to lipopolysaccharide, and returned to basal levels within 24 hours. Pretreatment of animals with an anti-TNF monoclonal antibody diminished the endotoxin-induced enhancement in transport activity by 50% to 75% by decreasing carrier maximum velocity. In contrast, when the antibody was given after endotoxin challenge, transport activity was not attenuated. CONCLUSIONS: The marked acceleration in hepatic amino acid uptake that occurs during endotoxemia is secondary to an increased Na(+)-dependent hepatocyte plasma membrane transport activity and is mediated, in large part, by the cytokine TNF.  相似文献   

13.
Chromaffin cells were isolated from bovine adrenal glands and fractionated into two distinct subpopulations by density gradient centrifugation on Percoll. Cells in the more dense fraction stored epinephrine (E) as their predominant catecholamine (81% of total catecholamines), contained high levels of phenylethanolamine N-methyltransferase (PNMT) activity, and exhibited intense PNMT immunoreactivity. This population of chromaffin cells was termed the E-rich cell population. Cells in the less dense fraction, the norepinephrine (NE)-rich cell population, stored predominantly NE (75% of total catecholamines). Although the NE-rich cells had only 3% as much PNMT activity as did the E-rich cells, 20% of the NE-rich cells were PNMT immunoreactive. This suggested that the PNMT-positive cells in the NE-rich cell cultures contained less PNMT per cell than did E-rich cells and may not be typical adrenergic cells. The regulation of PNMT mRNA levels and PNMT activity in primary cultures of E-rich and NE-rich cells was compared. At the time the cells were isolated, PNMT mRNA levels in NE-rich cells were approximately 20% of those in E-rich cells; within 48 h in culture, PNMT mRNA in both populations declined to almost undetectable levels. Treatment with dexamethasone increased PNMT mRNA levels and PNMT activity in both populations. In E-rich cells, dexamethasone restored PNMT mRNA to the level seen in freshly isolated cells and increased PNMT activity twofold. In NE-rich cells, dexamethasone increased PNMT mRNA to levels twice those found in freshly isolated cells and increased PNMT activity sixfold. Cycloheximide blocked the effects of dexamethasone on PNMT mRNA expression in NE-rich cells but had little effect in E-rich cells. Angiotensin II, forskolin, and phorbol 12,13-dibutyrate elicited large increases in PNMT mRNA levels in E-rich cells but had no effect in NE-rich cells. Our data suggest that PNMT expression is regulated differently in the two chromaffin cell subpopulations.  相似文献   

14.
The peripherin gene has three potential ATG translation initiation sites at positions 38, 56, and 290. The second ATG has been proposed to be the initiation codon used for translation of the protein, but there is no experimental evidence for this conjecture. We have isolated a full-length peripherin cDNA (designated as p61-11) from a rat brain cDNA library. Upon sequencing, we found that this cDNA contains a point mutation at the second potential translation initiation codon, which changes this ATG to ACG. When expressed in SW13 cl.2 vim- cells, a cell line without any detectable cytoplasmic intermediate filaments, the protein product of p61-11 cannot form a filamentous network and the major product is 45 kDa in size, which is most likely initiated from the third ATG. The protein product from the first ATG (57 kDa in size) of p61-11 is also detected albeit in smaller amounts. We introduced a frame-shift mutation upstream of the third ATG in p61-11 to create p61-11FS and showed that the third ATG is able to initiate translation efficiently even in the presence of the first ATG, and the 45 kDa protein leads to a diffuse nonfilamentous staining pattern in vim- cells confirming that the first ATG may not be the preferred translation initiation codon, since it cannot suppress a downstream ATG. We increased the translation efficiency from the first ATG of p61-11 by mutating the three nucleotides preceding this first ATG and thereby placing it in a better Kozak consensus sequence for translation initiation. The resulting 57 kDa protein is able to form a filamentous network in vim- cells. We corrected the mutation in the original p61-11 by polymerase chain reaction and generated two peripherin constructs: perM1M2 (which contains all three translation initiation codons) and per delta 1M2 (the first ATG is deleted, but the other two are present). When transfected, their protein products, about 57 kDa in size, form filamentous networks in the absence of other cytoplasmic intermediate filaments. Since there is no 45 kDa protein detected for these latter two constructs, it is reasonable to conclude that in the presence of the second ATG, little or no translation is initiated from the third ATG. Taken together, these results strongly suggest that the second ATG is the preferred translation initiation codon for the peripherin gene.  相似文献   

15.
A approximately 110-kDa glycoprotein purified from canalicular vesicles by bile acid affinity chromatography has been identified as the canalicular bile acid transport protein. Internal amino acid sequence and chemical and immunochemical characteristics of this protein were found to be identical to a rat liver canalicular ecto-ATPase. In order to definitively determine whether these were two activities of a single polypeptide, we examined the possibility that transfection of cDNA for the ecto-ATPase would confer bile acid transport characteristics, as well as ecto-ATPase activity, on heterologous cells. The results show that transfection of the ecto-ATPase cDNA conferred on COS cells de novo synthesis of a approximately 110-kDa polypeptide, as immunoprecipitated by antibody to the purified canalicular bile acid transport protein and conferred on COS cells the capacity to pump out [3H]taurocholate with efflux characteristics comparable with those previously determined in canalicular membrane vesicles (Km = 100 microM; Vmax = 200 pmol/mg of protein/20 s). A truncated ecto-ATPase cDNA, missing the cytoplasmic tail, was targeted correctly to the cell surface but did not confer bile acid transport activity on COS cells. The results of this study also show that the canalicular ecto-ATPase/bile acid transport protein is phosphorylated on its cytoplasmic tail and that its phosphorylation is stimulated by activation of protein kinase C and inhibited by inhibitors of protein kinase C activation. Moreover, inhibition of protein kinase C activation by staurosporine completely abrogates bile acid transport but does not affect ATPase activity. This study, therefore, demonstrates that the rat liver canalicular ecto-ATPase is also a bile acid transport protein, that the capacity to pump out bile acid can be conferred on a heterologous cell by DNA-mediated gene transfer, and that phosphorylation within the cytoplasmic tail of the transporter is essential for bile acid efflux activity but not for ATPase activity.  相似文献   

16.
Glucose transport activity ([3H]D-glucose uptake) in liver sinusoidal membrane vesicles (SMVs) from hyperthyroid rats was significantly higher than that from euthyroid controls (2.1-times increase in V(max) with K(m) unchanged at approximately 18 mM), associated with increased GLUT2 expression. In contrast, glucose transport V(max) into SMVs from hypothyroid rats was reduced to 0.75-times that of euthyroid controls, associated with a reduced GLUT2 abundance. GLUT1 expression in SMVs was unaffected by changes in thyroid status. GLUT2, but not GLUT1 abundance on the blood-facing membrane of liver cells is sensitive to changes in thyroid status and these changes in transporter expression directly correlate (r = 0.96) with altered glucose transport activity.  相似文献   

17.
The endocytic compartment has emerged as a major regulator of the uptake and processing of circulating ligands, and has been extensively studied during the last decade. In this work, the polypeptides of the three endosomal fractions: compartment of uncoupling receptors and ligands (CURL), multivesicular bodies (MVB) and receptor recycling compartment (RRC), isolated from livers of estradiol-treated rats, were analyzed by two-dimensional gel electrophoresis. Silver-stained gels revealed that although the three endosomal fractions shared a generally similar pattern of approximately 120 components, qualitative and quantitative differences between the three endocytic fractions could be demonstrated. The polypeptide composition of the bile was also studied and compared with ligands and proteins identified in the different endosomal fractions. One- and two-dimensional gel electrophoresis and Western blotting were used to investigate the protein composition of the three isolated endocytic fractions and 39 proteins were identified. The distribution of identified receptors, ligands and structural proteins among the three endosomal fractions was in agreement with their expected functionalities and with the different endocytic pathways in the hepatocyte.  相似文献   

18.
In order to characterize the transport of bile acids through the liver and to study the influence of drugs on these processes, a kinetic model for hepatobiliary transport of taurocholic acid (TC) using the isolated perfused liver was developed. After the system was brought to a steady state by infusing TC at a constant rate, a tracer dose of 14C-TC was injected into the medium. The medium disappearance of 14C-TC followed a first-order kinetic with a single rate constant. The plot of the biliary secretion rate of radioactivity versus time revealed a curve composed of at least three exponential components. From the described results and the present knowledge of hepatobiliary transport of bile acids we proposed a three compartment model, composed of a perfusion medium compartment and two liver compartments. Parameters calculated from the model constants agreed well with model-independent estimations. The influence of bromosulfophthalein (BSP) on the kinetic parameters was studied to compare the result with the known effect of BSP on hepatic transport of taurocholic acid. BSP decreased the constant describing the fractional transfer of taurocholic acid from medium into the liver, which is in agreement with the inhibition of hepatic uptake of taurocholic acid by BSP. Thus a three compartment model may adequately define the hepatobiliary transport of taurocholic acid in the isolated perfused rat liver.  相似文献   

19.
Primary cultures of rat-liver parenchymal cells show carrier-mediated nucleoside uptake by a mechanism that mainly involves concentrative, Na+-dependent transport activity. In contrast, the hepatoma cell line FAO shows high nucleoside transport activity, although it is mostly accounted for by Na+-independent transport processes. This is associated with a low amount of sodium purine nucleoside transporter (SPNT) mRNA. SPNT encodes a purine-preferring transporter expressed in liver parenchymal cells. To analyze whether SPNT expression is modulated during cell proliferation, SPNT mRNA levels were determined in the early phase of liver growth after partial hepatectomy and in synchronized FAO cells that had been induced to proliferate. SPNT mRNA amounts increased as early as 2 hours after partial hepatectomy. FAO cells induced to proliferate after serum refeeding show an increase in SPNT mRNA levels, which is followed by an increase in Na+-dependent nucleoside uptake and occurs before the peak of 3H-thymidine incorporation into DNA. FAO cells also express significant equilibrative nucleoside transport activity, which may be accounted for by the expression of the nitrobenzylthioinosine (NBTI)-sensitive and -insensitive isoforms, rat equilibrative nucleoside transporter 1 (rENT1) and rENT2, respectively. Interestingly, rENT2 mRNA levels follow a similar pattern to that described for SPNT when FAO cells are induced to proliferate, whereas rENT1 appears to be constitutively expressed. Liver parenchymal cells show low and negligible mRNA levels for rENT1 and rENT2 transporters, respectively, although most of the equilibrative transport activity found in hepatocytes is NBTI-resistant. It is concluded that: 1) SPNT expression is regulated both in vivo and in vitro in a way that appears to be dependent on cell cycle progression; 2) SPNT expression may be a feature of differentiated hepatocytes; and 3) equilibrative transporters are differentially regulated, rENT2 expression being cell cycle-dependent. This is consistent with its putative role as a growth factor-induced delayed early response gene.  相似文献   

20.
We studied the superficial abdominal reflexes of 83 normal men, using as stimuli a train of electrical pulses or a needle scratch. Electrical stimulation delivered to the midline of the abdominal wall evoked, almost symmetrically on both sides, two reflex discharges: an early response having an oligophasic wave form, and a late response of polyphasic wave form. The threshold of the early response significantly exceeded that of the late response. With repetitive stimulation, the late response generally revealed habituation. Electrical stimulation of the unilateral abdominal wall evoked two responses on the stimulated side, whereas it evoked only the late response on the contralateral side. A needle scratch on the unilateral abdominal wall evoked one reflex discharge with a long latency and a polyphasic wave form. This response occurred generally on the stimulated side and became habituated to repeated scratching. These observations suggest that the superficial abdominal reflexes elicited by electrical stimulation are composed of two reflex discharges with a different reflex arc. They appear to closely resemble the blink reflex. The response elicited by needle scratching is thought to correspond to the late response of the electrically elicited abdominal reflexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号