共查询到18条相似文献,搜索用时 46 毫秒
1.
为了解决传统的入侵检测聚类算法准确率较低这个问题,结合半监督学习的思想,提出了一种面向入侵检测的半监督聚类算法。首先利用样本数据集中的部分标记数据,生成用于初始化聚类的种子集,通过计算样本数据集中标记点与每个类簇中标记点均值的欧氏距离,得到每类的初始聚类中心,实现了入侵检测数据的准确识别。该算法有效地避免了传统聚类算法中初始聚类中心选择的盲目性和随机性,提高了检测率。实验结果表明,在处理入侵检测数据时,该算法能够充分利用少量类标记信息进行半监督学习,较传统的K-means算法聚类效果更好,检测准确率更高。 相似文献
2.
针对网络入侵检测数据存在大量冗余信息和传统聚类算法对离群点检测不足的问题,提出一种基于主成分分析(principal component analysis, PCA)和半监督聚类的入侵检测算法。首先使用PCA对数据进行特征提取,消除数据间的冗余属性;然后利用少量已标记样本和成对约束信息,通过引入竞争凝聚让系统主动学习,以实现对大量未知样本的检测。在入侵检测数据集和UCI基准数据集上的实验结果表明,该算法能有效提高系统的性能。 相似文献
3.
在入侵检测系统中,未知标签数据容易获得,标签数据较难获得。文中提出了一个基于半监督聚类的入侵检测模型,利用少量的标签数据和大量未知标签数据生成self/nonself行为库,进而得到self/nonself模式库。实验结果表明,该模型有较高的检测率。 相似文献
4.
互联网络中,计算机和设备随时受到恶意入侵的威胁,严重影响了网络的安全性。入侵行为具有升级快、隐蔽性强、随机性高的特点,传统方法难以有效防范,针对这一问题,本文提出一种基于支持向量机(SVM)的网络入侵检测集成学习算法,利用SVM建立入侵检测基学习器,采用AdaBoost集成学习方法对基学习器迭代训练,生成最终的入侵检测模型,仿真实验表明入侵检测模型更加贴近真实的网络入侵样本,减小了小样本集导致的模型精度大幅下降的问题,同时模型的整体检测精度也有较大的提升。 相似文献
5.
针对传统BP神经网络在检测速度、精度、复杂度等方面的缺陷,提出了一种基于深度信念网(deepbeliefnets,DBN)的网络入侵检测算法,将数据通过双层RBM结构降维,再用BP神经网络反向微调结构参数,从而简化了数据复杂度,减少了BP神经网络的计算量.通过对KDD99数据集仿真实验表明,该算法对于大数据拟合快,检测精度较高. 相似文献
6.
入侵检测系统作为一种对网络传输进行即时监视,发现可疑传输时发出警报或者采取主动措施的网络安全设备,在网络环境不断复杂化的今天,入侵检测技术已成为网络安全关注的热点.介绍了入侵检测系统的概念、功能、模式及分类,指出了当前入侵检测系统存在的问题并提出了改进措施,同时预测了入侵检测系统的发展趋势. 相似文献
7.
为了更好地发挥主动学习、半监督学习和集成学习这3种机器学习方法的优势,研究了1个不需要2个充分冗余视图、泛化能力强的高效学习算法。从聚类假设出发,给出每轮协同训练过程中添加自动标记样本的置信度度量方法,降低误标记率;提出作为主动选择未标记样本依据的贡献度的概念,贡献度越高的样本,越具有人工标记的价值,在协同训练迭代结束后,选择贡献度高的样本标记,就能增强反馈的效果,提升学习性能,提出一种基于主动学习的集成协同训练算法。应用于图像检索的实验结果表明,提出的算法是高效可行的。 相似文献
8.
为降低获取像素级标签的成本,提出一种基于弱监督和半监督学习的红外舰船分割方法,在残差网络(residual network, ResNet)的基础上,设计一个自适应定位模块,并使用相似损失、前景损失和背景损失训练自适应定位模块,生成舰船定位图;利用少量像素级标签数据和大量定位图数据交替训练显著性网络生成显著图;用条件随机场优化显著图,并结合图像级标签生成伪标签图像,使用伪标签图像训练分割网络,得到红外舰船的分割结果。在红外舰船数据集上的平均交并比为71.18%,与当前其他先进方法进行对比,平均交并比提高了9.47%,试验结果表明自适应定位模块能够有效定位红外舰船,交替训练方法可以使红外舰船的边缘更准确。 相似文献
9.
已有的虚假评论识别方法主要采用启发式策略或简单特征建模,针对这些方法的不足,提出使用机器学习方法识别虚假评论。首先整合计算语言学与心理语言学的知识对评论文本进行建模,使用全监督学习算法来评价不同特征建模的性能,选出最好的特征组合。为了提高识别性能,设计两种半监督学习算法充分利用大量的未标注文本。实验结果证实所提算法超过当前的基准。 相似文献
10.
入侵检测中的多分类SVM增量学习算法通过分析入侵检测样本的分布特点,提出了一种多分类SVM增量学习算法.该算法通过衡量同类样本点和样本中心之间的距离来确定用于训练的支持向量,以选择对分类贡献较大的边缘向量进行训练,通过求解多个超平面的方法划分出不同类别样本的区域,实现了多分类的增量学习.在保证检测率的同时,减少了样本学习数量.利用KDDCUP99标准数据集进行测试,证明该算法可以大幅度降低训练的时间和空间复杂度. 相似文献
11.
赵建华 《西华大学学报(自然科学版)》2015,39(1):36-40, 51
为提高半监督分类的性能,提出一种基于SOM神经网络的半监督分类算法SSC-SOM。结合SOM的聚类特性,基于先聚类后标记的思想,充分利用有标记样本和未标记样本训练SOM分类器;将聚类的形成和有标记样本分配到各个聚类中同时进行,并根据有标记样本计算各个聚类的聚类中心;在整个未标记样本的范围内,根据聚类中心,使用K近邻算法对未标记样本进行标记,挖掘未标记样本的隐含信息。在UCI数据集中进行分类实验,其结果表明,SSC-SOM的分类率比SSOM提高2.22%,且收敛性较好。 相似文献
12.
刘威 《武汉理工大学学报》2009,31(5)
论述了入侵检测系统,目的是弥补防火墙和防病毒软件的缺点,用以构建完善的安全防线.同时,对省内的教育系统网络环境下的分布式主动入侵检测技术进行了探讨,提出了一种在流数据环境下,能够整合整个网络的资源,达到实施防护的入侵检测系统. 相似文献
13.
基于AdaBoost和概率神经网络的入侵检测算法 总被引:1,自引:0,他引:1
将AdaBoost算法和概率神经网络结合,提出了一种新的概率神经网络模型ABPNN,基于此模型提出一种新的入侵检测算法.该算法对接收到的网络数据进行分析判断,实现入侵方式的自动分类,并且能对新的入侵行为进行分类和记忆.实验证明该算法在入侵检测系统的检测率和误报率方面都有优越的性能表现. 相似文献
14.
针对竞争层中存在的容易陷入局部极小、可能丢弃局部较理想的神经元问题,提出了增加/删除竞争神经元的神经网络。它采用基于Hebbian假设的非监督学习算法对网络行为进行学习,并根据相似度确定奖励和惩罚的等级。在学习过程中根据需要增加神经元以形成新的聚类,在学习结束后删除错误的聚类,从而避免了死神经元问题,使聚类更加准确。 相似文献
15.
传统的入侵检测机器学习算法,面对有差异的新旧数据尤其是未知的攻击行为,会出现检测准确率较低、漏检率较高的问题.为此,提出了一种将人工蜂群(ABC)算法、XGBoost模型与迁移学习相结合的ABC-XGBTrl算法.首先通过使用少量有标签的新数据训练初始分类模型,然后将有标签的旧数据中分类正确的部分与少量有标签的新数据合... 相似文献
16.
本文给出一种基于支持向量机分类器的Boosting算法并将其应用于入侵检测;通过KDD'99数据的仿真实验将其与单一的支持向量机分类器进行比较,实验结果表明该方法比单一的支持向量机分类器具有更好的检测准确率。 相似文献
17.
赵建华 《西华大学学报(自然科学版)》2015,(1):36-40,51
为提高半监督分类的性能,提出一种基于SOM神经网络的半监督分类算法SSC-SOM。结合SOM的聚类特性,基于先聚类后标记的思想,充分利用有标记样本和未标记样本训练SOM分类器;将聚类的形成和有标记样本分配到各个聚类中同时进行,并根据有标记样本计算各个聚类的聚类中心;在整个未标记样本的范围内,根据聚类中心,使用K近邻算法对未标记样本进行标记,挖掘未标记样本的隐含信息。在UCI数据集中进行分类实验,其结果表明,SSC-SOM的分类率比SSOM提高2.22%,且收敛性较好。 相似文献
18.
遗传算法优化模糊神经网络的入侵检测模型 总被引:1,自引:0,他引:1
针对目前大多数的入侵检测系统存在的局限性,依据通用入侵检测框架CIDF,提出了一种利用遗传算法优化网络参数的基于模糊神经网络的入侵检测模型,分析了入侵模糊特征、模糊神经网络的学习优化问题,给出了此模型中模糊神经网络模块的训练算法.仿真实验结果表明,该检测算法可以有效地进行入侵检测,检测效率达到95%以上. 相似文献