首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The peak particle size and expanded uncertainties (95 % confidence interval) for two new particle calibration standards are measured as 101.8 nm ± 1.1 nm and 60.39 nm ± 0.63 nm. The particle samples are polystyrene spheres suspended in filtered, deionized water at a mass fraction of about 0.5 %. The size distribution measurements of aerosolized particles are made using a differential mobility analyzer (DMA) system calibrated using SRM® 1963 (100.7 nm polystyrene spheres). An electrospray aerosol generator was used for generating the 60 nm aerosol to almost eliminate the generation of multiply charged dimers and trimers and to minimize the effect of non-volatile contaminants increasing the particle size. The testing for the homogeneity of the samples and for the presence of multimers using dynamic light scattering is described. The use of the transfer function integral in the calibration of the DMA is shown to reduce the uncertainty in the measurement of the peak particle size compared to the approach based on the peak in the concentration vs. voltage distribution. A modified aerosol/sheath inlet, recirculating sheath flow, a high ratio of sheath flow to the aerosol flow, and accurate pressure, temperature, and voltage measurements have increased the resolution and accuracy of the measurements. A significant consideration in the uncertainty analysis was the correlation between the slip correction of the calibration particle and the measured particle. Including the correlation reduced the expanded uncertainty from approximately 1.8 % of the particle size to about 1.0 %. The effect of non-volatile contaminants in the polystyrene suspensions on the peak particle size and the uncertainty in the size is determined. The full size distributions for both the 60 nm and 100 nm spheres are tabulated and selected mean sizes including the number mean diameter and the dynamic light scattering mean diameter are computed. The use of these particles for calibrating DMAs and for making deposition standards to be used with surface scanning inspection systems is discussed.  相似文献   

2.
Spherical oxidized nickel particles 15 to 200 nm in average size have been produced by a crucibleless aerosol method involving metal vapor condensation in an inert gas flow and oxidation processes. The particles have been characterized by scanning electron microscopy, X-ray microanalysis, X-ray diffraction, BET surface area measurements, and vibrating-sample magnetometry. The process parameters have been optimized for the preparation of particles with tailored size, specific surface area, and saturation magnetization. A dc electric field applied to the condensation zone during the oxidation process reduces the size and increases the extent of oxidation of the particles. We have studied low-temperature oxidation of carbon monoxide and propane on nickel nanopowders differing in particle size and extent of oxidation. The nanoparticles with optimized characteristics have been shown to have a marked catalytic effect on these processes.  相似文献   

3.
气溶胶粒子在裂隙中穿透特性实验研究   总被引:2,自引:1,他引:1  
为研究气溶胶颗粒通过房屋裂隙进入室内的穿透特性,用铁质矩形裂隙在实验室进行模拟实验研究。结果表明:气溶胶粒径、气体流速和裂隙高度对气溶胶的穿透率影响比较显著;流速和裂隙高度增加会增大气溶胶的穿透率;不同粒径的气溶胶在相同实验条件下穿透率存在明显差异,最易穿透的是粒径在0.5μm左右的粒子,小粒子和大粒子分别在Brownian扩散作用和重力沉降作用下穿透率低。  相似文献   

4.
Results comparing Eulerian and Lagrangian simulations of particle deposition from a point source in a channel are presented. The mean turbulent flow field is simulated using a two-equation k-ε turbulence model. In the first, approach, diffusion of aerosol particles is studied by solving the corresponding advection-diffusion equation. Deposition of particles in the intermediate size range are analyzed by considering both the turbulent eddy diffusion and the eddy impaction processes, as well as the Brownian diffusion effects. In the second approach, the turbulence fluctuating velocity field are numerically simulated as a Gaussian random process. The Lagrangian trajectories of aerosol particles in the channel are then evaluated by solving the corresponding particle equation of motion. Effects of Brownian diffusion on particle motions are also included. A series of digital simulations for particles of various sizes which are released at different locations across the channel are carried out. Depositions of different size particles on the wall under a variety of conditions are analyzed. The relative significance of turbulence and Brownian effects are also discussed.  相似文献   

5.
Summary. Based on the model of surface renew and penetration the local cumulative sub-micron particle deposition from a turbulent flow onto a tube wall has been theoretically predicted. The conjoint effects of eddy diffusion, Brownian diffusion, and thermophoresis are considered in the deposition process. The quantitative predictions of mean particle deposition velocity coupled with appropriate estimates of the mean residence time are evaluated by comparison with previous models and experimental measurements. The thermophoretic effect can decrease particle transfer by about two orders of magnitude and fluctuates with particle size, Reynolds number and temperature gradient. Results show similar trends to the previous predictions and good agreement for the percentage change in deposition relative to that obtained under the isothermal conditions.  相似文献   

6.
The purpose of this study was to assess quantitatively the aerosol deposition in a model eye chamber to identify the mechanism(s) of deposition and delivery efficiency for application in retinal disease treated with vitrectomy. Dry aerosol particles were produced with mixtures of fluorescein and a variable concentration of cesium chloride, which ranged in aerodynamic size from 0.6 to 1.3 μm. The aerosol was injected through a small inlet tube into Teflon chambers that had a vented, spherical cavity (diameter ?"). Two filling times of 60 s and 90 s were used. Although significant loss occurred in the syringe, the mass deposited within the chambers increased with aerosol concentration and ranged from 0.5 to nearly 15 μg. Between 60 and 90% of the mass was deposited on the lower surface of the chamber. The mechanism of deposition was consistent with diffusion through a boundary layer during filling followed by sedimentation of the remaining suspended aerosol particles. Based on these results, an aerosol with a median particle size of 1.3 μm was shown to provide a therapeutically effective dose of 5-fluorouracil. The approach is general and can be applied to the aerosol delivery of other drugs to the vitreous chamber.  相似文献   

7.
Box GP 《Applied optics》2005,44(7):1288-1295
The analytic eigenfunction inversion technique to retrieve aerosol columnar size distributions from Mie extinction measurements has been extended to include a priori information, specifically surface area. The earlier (standard) and new (subtracted) techniques are compared by use of synthetic data that cover typical aerosol size distributions. Two different measurement wavelength ranges are considered. It is shown that the most appropriate inversion technique depends on the particle sizes, with the standard technique being more appropriate for small particles and the subtracted being more appropriate for large particles. Also presented is a simple method to determine whether a particular inversion technique is likely to produce meaningful results with a particular data set.  相似文献   

8.
Simulation studies were carried out with regard to the feasibility of using combined observations from sunphotometer (SPM) and lidar for microphysical characterization of aerosol particles, i.e., the retrieval of effective radius, volume, and surface-area concentrations. It was shown that for single, homogeneous aerosol layers, the aerosol parameters can be retrieved with an average accuracy of 30% for a wide range of particle size distributions. Based on the simulations, an instrument combination consisting of a lidar that measures particle backscattering at 355 and 1574 nm, and a SPM that measures at three to four channels in the range from 340 to 1020 nm is a promising tool for aerosol characterization. The inversion algorithm has been tested for a set of experimental data. The comparison with the particle size distribution parameters, measured with in situ instrumentation at the lidar site, showed good agreement.  相似文献   

9.
ABSTRACT

Results comparing Eulerian and Lagrangian simulations of particle deposition from a point source in a channel are presented. The mean turbulent flow field is simulated using a two-equation k-? turbulence model. In the first, approach, diffusion of aerosol particles is studied by solving the corresponding advection-diffusion equation. Deposition of particles in the intermediate size range are analyzed by considering both the turbulent eddy diffusion and the eddy impaction processes, as well as the Brownian diffusion effects. In the second approach, the turbulence fluctuating velocity field are numerically simulated as a Gaussian random process. The Lagrangian trajectories of aerosol particles in the channel are then evaluated by solving the corresponding particle equation of motion. Effects of Brownian diffusion on particle motions are also included. A series of digital simulations for particles of various sizes which are released at different locations across the channel are carried out. Depositions of different size particles on the wall under a variety of conditions are analyzed. The relative significance of turbulence and Brownian effects are also discussed.  相似文献   

10.
We present effective radius, volume, surface-area, and number concentrations as well as mean complex refractive index of tropospheric particle size distributions based on lidar measurements at six wavelengths. The parameters are derived by means of an inversion algorithm that has been specifically designed for the inversion of available optical data sets. The data were taken on 20 June and on 20 July 1997 during the Aerosol Characterization Experiment ACE 2 (North Atlantic/Portugal) and on 9 August 1998 during the Lindenberg Aerosol Characterization Experiment LACE 98 (Lindenberg/Germany). Measurements on 20 June 1997 were taken in a clean-marine boundary layer, and a large value of 0.64 mum for the effective radius, a low value of 1.45 for the real part, and a negligible imaginary part of the complex refractive index were found. The single-scatter albedo was 0.98 at 532 nm. It was derived from the particle parameters with Mie-scattering calculations. In contrast, the particles were less than 0.2 mum in effective radius in a continental-polluted aerosol layer on 20 July 1997. The real part of the complex refractive index was ~1.6; the imaginary part showed values near 0.03i. The single-scatter albedo was 0.84. On 9 August 1998 an elevated particle layer located from 3000 to 6000 m was observed, which had originated from an area of biomass burning in northwestern Canada. Here the effective radius was ~0.24 mum, the real part of the complex refractive index was above 1.6, the imaginary part was ~0.04i, and the single-scatter albedo was 0.81. Excellent agreement has been found with results based on sunphotometer and in situ measurements that were performed during the field campaigns.  相似文献   

11.
Air has been irradiated with high energy protons at the 12 GeV proton synchrotron to obtain the following parameters essential for the internal dose evaluation from airborne 11C produced through nuclear spallation reactions: the abundance of gaseous and particulate 11C, chemical forms, and particle size distribution. It was found that more than 98% of 11C is present as gas and the rest is aerosol. The gaseous components were only 11CO and 11CO2, and their proportions were approximately 80% and 20%, respectively. The particulate 11C was found to be sulphate and/or nitrate aerosols having a log-normal size distribution; the measurement using a diffusion battery showed a geometric mean radius of 0.035 micron and a geometric standard deviation of 1.8 at a beam intensity of 6.8 x 10(11) proton.pulse-1 and an irradiation time of 9.6 min. By taking the chemical composition and particle size into account, effective doses both from internal and from external exposures per unit concentration of 11C were calculated for various room sizes. The values can be used to evaluate the effective dose from the airborne 11C produced in the accelerator tunnels.  相似文献   

12.
We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to approximately 10 microm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of approximately 50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of < 1 microm the real part of the complex refractive index was retrieved to an accuracy of +/- 0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.  相似文献   

13.
ABSTRACT

Inhalation powders with consistent particle properties, including particle size, size distribution, and shape were produced with an aerosol synthesis method. Compared to conventional spray drying, the aerosol method provides better control of the thermal history and residence time of each droplet and product particle due to the laminar flow in the heated zone of the reactor where the droplet drying and particle formation take place. A corticosteroid, beclomethasone dipropionate, generally used for asthma treatment was chosen as a representative material to demonstrate the process. Spherical particles were produced with a droplet-to-particle method from an ethanolic precursor solution. The droplets produced with an ultrasonic nebulizer were carried to a heated zone of the reactor at 50–150°C where the solvent was evaporated and dry particles formed. The mass mean diameter of the particles were well within the respirable size range (approximately 2 μm). The geometric standard deviation (GSD) of produced particles was approximately 2. The particle surface structure varied from smooth to rough depending on the degree of particle crystallinity and was affected by the thermal history of the particle. Amorphous particles with smooth surface were most likely obtained due to the rapid evaporation of the solvent from the droplet combined with the slow diffusion of the beclomethasone dipropionate molecule. The amorphous particles were transformed slowly to crystalline particles in the open atmosphere. In addition, the particle surface structure changed from smooth to rough during storage. The process was accelerated by thermal post-annealing. However, additional heating also increased particle sintering. By optimizing the reactor parameters, and thus increasing the molecular diffusion, stable, crystalline particles were produced at 150°C.  相似文献   

14.
Inhalation powders with consistent particle properties, including particle size, size distribution, and shape were produced with an aerosol synthesis method. Compared to conventional spray drying, the aerosol method provides better control of the thermal history and residence time of each droplet and product particle due to the laminar flow in the heated zone of the reactor where the droplet drying and particle formation take place. A corticosteroid, beclomethasone dipropionate, generally used for asthma treatment was chosen as a representative material to demonstrate the process. Spherical particles were produced with a droplet-to-particle method from an ethanolic precursor solution. The droplets produced with an ultrasonic nebulizer were carried to a heated zone of the reactor at 50-150°C where the solvent was evaporated and dry particles formed. The mass mean diameter of the particles were well within the respirable size range (approximately 2 μm). The geometric standard deviation (GSD) of produced particles was approximately 2. The particle surface structure varied from smooth to rough depending on the degree of particle crystallinity and was affected by the thermal history of the particle. Amorphous particles with smooth surface were most likely obtained due to the rapid evaporation of the solvent from the droplet combined with the slow diffusion of the beclomethasone dipropionate molecule. The amorphous particles were transformed slowly to crystalline particles in the open atmosphere. In addition, the particle surface structure changed from smooth to rough during storage. The process was accelerated by thermal post-annealing. However, additional heating also increased particle sintering. By optimizing the reactor parameters, and thus increasing the molecular diffusion, stable, crystalline particles were produced at 150°C.  相似文献   

15.
Dust particle deposition on fin surface has a significant influence on the performance of fin-and-tube heat exchangers, and the purpose of this study is to develop a numerical model for predicting the particle deposition rate on fin surface. In the model, the particle trajectories were calculated by the particle motion equation; the particle deposition on the fin surface was described based on the critical impact angle and the critical sticking velocity of incident particles; the particle deposition on the formed fouling layer was described based on the critical impact angle, the critical sticking velocity and the critical removal velocity of incident particles. The particle distributions on fin surface predicted by the model agree well with the images captured in the visualization experiment. The predicted particle deposition weight per unit area can describe 88% of the experimental data within a deviation of ±20% and the mean deviation is 12.8%.  相似文献   

16.
为得到实际岩体裂隙中气溶胶的穿透行为特性,为山体中存储间的选址及洞室工程防护措施的制定提供精确的数据支持,利用电子低压碰撞器对气溶胶在岩体裂隙中的穿透率进行实验测量,得到气流速度、粒径大小、裂隙长度、裂隙高度等参数对穿透率的影响。结果表明,在较低的流速下,小粒径粒子的穿透率随流速的增大稍微增大,大粒径粒子趋势不明显;随着气溶胶粒径的增大,穿透率先增大后减小,峰值在0.3~1.0μm之间;随着裂隙长度的增加,穿透率呈指数减小,且不同长度裂隙、不同粒径气溶胶粒径的穿透率减小趋势基本一致;裂隙高度的增加使气溶胶的穿透率显著增大,高为1.0 mm的裂隙中,气溶胶的穿透率更大,更接近理论结果;在常温常压下,高为0.1 mm的裂隙中,流速为5.6 m/s时,粒径为0.3μm的气溶胶在0.1 mm宽岩体裂隙中的迁移距离非常有限。粒子除了受重力沉积和扩散沉积作用,还受到碰撞效应等作用。  相似文献   

17.
We are developing simulation tools to design aerosol experiments in a space environment. The simulations will be used to assess trade-offs among the level of gravity, active experimental volume, particle density and primary particle size. In our previous work [1] we simulated the formation of particle clusters in a low gravity environment using a modified version of the CONTAIN code [2]. The model did not include the effect of cluster fragmentation on the particle size distribution and deposition on the cell walls. Before implementing complex modifications to the CONTAIN code we have investigated the effects of fragmentation using the Monte Carlo (MC) method to simulate aerosol dynamics. The constant-N Monte Carlo method developed by the Matsoukas group [3–5] was used. In this method the number of particles in the system is kept constant and the mean cluster volume is increased or decreased depending on the event (fragmentation, agglomeration,…). We are particularly interested in measuring the average volume of clusters and probability, Pk, of finding a cluster containing k primary particles. Both quantities are measurable in a low microgravity experiment. Results are presented for different levels of gravity, particle density and fragmentation kernel. The results demonstrate the potential benefits of a full simulation of the planned experiments.  相似文献   

18.
An approach through numerical integration for evaluating aerosol particle deposition onto a vertical flat plate is proposed. The airflow was based on the assumption of a two-dimensional, incompressible and steady state laminar flow driven by a buoyancy force. The mechanisms of particle deposition were coupled from natural convection, Brownian diffusion, thermophoresis and electrophoresis due to constant electric strength. This approach demonstrated an easier method of prediction and produced a very good agreement with the thermophoresis exact solution. Results described the role of thermophoretic and electrophoretic forces on particle deposition. The thermophoresis effect was predicted to be particularly important for particles of d(p)>/=0.1 microm moving toward a cold surface or away from a hot surface at a given temperature gradient. The electrophoresis effect dominates the deposition of submicron particles.  相似文献   

19.
We have investigated the growth of small supported rhodium particles on different substrates (mica, Al2O3, NaCl). The particles were deposited in a vacuum from a special source permitting a low evaporation rate. The particle size, density and crystallographic structure dependencies on mean deposit thickness, deposition rate and substrate temperature during the deposition were studied by transmission electron microscopy and diffraction (TEM and TED). The results showed that it is possible to prepare a model Rh catalyst with a well-defined particle population by vacuum vapour deposition. These catalysts form relatively stable systems with respect to the thermal treatment. It was observed that the particle density, the mean size and the size dispersion of Rh particles are controlled by either atom diffusion or by particle migration on the substrate. The diffusion of atoms and clusters increases with the substrate temperature and the growth takes place also by particle coalescence.  相似文献   

20.
In this study, tablet tensile strength has been adjusted for tablet surface area and the average distance between particles in compacts of different materials. The aim of the study was to evaluate the feasibility of using this concept to assess the dominating interparticulate bonding mechanisms. Adjustment of the tensile strength for both tablet surface area and mean pore radius gave similar bonding strength values for materials bonding mainly by weak distance forces (crystalline lactose, sucrose, and microcrystalline cellulose) almost independently of compaction pressure. However, particle size and other factors may still affect the compensated strength values. The bond strength was much higher and more varied for materials bonding also with solid bridges (potassium chloride, sodium chloride, and possibly also sodium bicarbonate and amorphous lactose). For these materials, particle size and compaction pressure had a substantial effect on the bond strength. It is probably the formation of continuous bridges between adjacent particles that is important in these materials rather than the surface properties and the average distance between particles positioned at some distance from each other. Hence, adjusting the tensile strength of compacts does not necessarily reflect all the dominating factors responsible for interparticulate bonding. Nonetheless, adjustment for tablet surface area and mean pore radius allowed discrimination between different dominating interparticulate bonding mechanisms in these compacted materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号