共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein footprinting based on hydroxyl radical-mediated modification and quantitative mass spectroscopic analysis is a proven technique for examining protein structure, protein-ligand interactions, and structural allostery upon protein complex formation. The reactive and solvent-accessible amino acid side chains function as structural probes; however, correct structural analysis depends on the identification and quantification of all the relevant oxidative modifications within the protein sequence. Sulfur-containing amino acids are oxidized readily and the mechanisms of oxidation are particularly complex, although they have been extensively investigated by EPR and other spectroscopic methods. Here we have undertaken a detailed mass spectrometry study (using electrospray ionization mass spectrometry and tandem mass spectrometry) of model peptides containing cysteine (Cys-SH), cystine (disulfide bonded Cys), and methionine after oxidation using gamma-rays or synchrotron X-rays and have compared these results to those expected from oxidation mechanisms proposed in the literature. Radiolysis of cysteine leads to cysteine sulfonic acid (+48 Da mass shift) and cystine as the major products; other minor products including cysteine sulfinic acid (+32 Da mass shift) and serine (-16 Da mass shift) are observed. Radiolysis of cystine results in the oxidative opening of the disulfide bond and generation of cysteine sulfonic acid and sulfinic acid; however, the rate of oxidation is significantly less than that for cysteine. Radiolysis of methionine gives rise primarily to methionine sulfoxide (+16 Da mass shift); this can be further oxidized to methionine sulfone (+32 Da mass shift) or another product with a -32 Da mass shift likely due to aldehyde formation at the gamma-carbon. Due to the high reactivity of sulfur-containing amino acids, the extent of oxidation is easily influenced by secondary oxidation events or the presence of redox reagents used in standard proteolytic digestions; when these are accounted for, a reactivity order of cysteine > methionine approximately tryptophan > cystine is observed. 相似文献
2.
Protein footprinting utilizing hydroxyl radicals coupled with mass spectrometry has become a powerful technique for mapping the solvent accessible surface of proteins and examining protein-protein interactions in solution. Hydroxyl radicals generated by radiolysis or chemical methods efficiently react with many amino acid residue side chains, including the aromatic and sulfur-containing residues along with proline and leucine, generating stable oxidation products that are valuable probes for examining protein structure. In this study, we examine the radiolytic oxidation chemistry of histidine, lysine, and arginine for comparison with their metal-catalyzed oxidation products. Model peptides containing arginine, histidine, and lysine were irradiated using white light from a synchrotron X-ray source or a cesium-137 gamma-ray source. The rates of oxidation and the radiolysis products were primarily characterized by electrospray mass spectrometry including tandem mass spectrometry. Arginine is very sensitive to radiolytic oxidation, giving rise to a characteristic product with a 43 Da mass reduction as a result of the loss of guanidino group and conversion to gamma-glutamyl semialdehyde, consistent with previous metal-catalyzed oxidation studies. Histidine was oxidized to generate a mixture of products with characteristic mass changes primarily involving rupture of and addition to the imidazole ring. Lysine was converted to hydroxylysine or carbonylysine by radiolysis. The development of methods to probe these residues due to their high frequency of occurrence, their typical presence on the protein surface, and their frequent participation in protein-protein interactions considerably extends the utility of protein footprinting. 相似文献
3.
Hydroxyl radical-mediated footprinting coupled with mass spectroscopic analysis is a new technique for mapping protein surfaces, identifying structural changes modulated by protein-ligand binding, and mapping protein-ligand interfaces in solution. In this study, we examine the radiolytic oxidation of aspartic and glutamic acid residues to probe their potential use as structural probes in footprinting experiments. Model peptides containing Asp or Glu were irradiated using white light from a synchrotron X-ray source or a cesium-137 gamma-ray source. The radiolysis products were characterized by electrospray mass spectrometry including tandem mass spectrometry. Both Asp and Glu are susceptible to radiolytic oxidization by gamma-rays or synchrotron X-rays. Radiolysis results primarily in the oxidative decarboxylation of the side chain carboxyl group and formation of an aldehyde group at the carbon next to the original carboxyl group, giving rise to a characteristic product with a -30 Da mass change. A similar oxidative decarboxylation also takes place for amino acids with C-terminal carboxyl groups. The methylene groups in the Asp and Glu side chains also undergo oxygen addition forming ketone or alcohol groups with mass changes of +14 and +16 Da, respectively. Characterizing the oxidation reactions of these two acidic residues extends the number of useful side chain probes for hydroxyl radical-mediated protein footprinting from 10 (Cys, Met, Trp, Tyr, Phe, Arg, Leu, Pro, His, Lys) to 12 amino acid residues, thus enhancing our ability to map protein surface structure and in combination with previously identified basic amino acid probes can be used to examine molecular details of protein-protein interactions that are driven by electrostatics. 相似文献
4.
《Materials science & engineering. C, Materials for biological applications》2004,24(6-8):791-796
The enzymatic polycondensation of polyamides containing amino acid residues was demonstrated. The diamide monomers, containing amino acid (Phe, Leu, Val) esters at both ends, were synthesized using a Scotten–Baumann reaction. Polymerization was conducted through an enzymatic aminolysis of the ester bond by aliphatic diamine in organic solvents. Several proteases were employed to evaluate the enzyme specificity on the polymerization. α-Chymotrypsin was found to have the most effective catalyst activity on the monomer containing phenylalanine, reflecting the specific enzymatic process. Approximate molecular weight at about 7000 was obtained through this enzymatic polycondensation. The structures of the obtained polymers were confirmed employing IR and NMR spectra. The polymerization occurred in various solvents, including two- and one-phase systems. It is found that water content in organic solvent affects the yield. 相似文献
5.
Photochemical cross-linking of human replication protein A (hRPA) to oligonucleotide dT30 was performed to enable identification of amino acid sequences that reside in the DNA-binding domain. A nucleoprotein complex, with a 1:1 protein/DNA stoichiometry, was separated from unreacted enzyme and oligonucleotide by SDS-polyacrylamide gel electrophoresis and subjected to in-gel digestion with trypsin. Three cross-linked tryptic peptides (nucleopeptides) of hRPA70xdT30 (T43, T28/29, and a truncated T24/25) were isolated. Combined mass spectrometric and C-terminal proteolysis experiments showed that at least one amino acid in the segment 235-ATAFNE-240 (located in T24/25), at least one out of the two residues sequence 269-FT-270 (located in T28/29), and at least one from the sequence 383-VSDF-386 (located in T43) were involved in cross-linking. These peptides contained aromatic residues (F238, F269, and F386 respectively) that can form base-stacking interactions with the DNA and were, therefore, most likely to be involved in cross-linking. The results obtained in this study demonstrate that a combination of exhaustive proteolysis and MALDI TOF MS can localize the sites of DNA binding to very short sequences of amino acids. Data so acquired can confirm or amend information obtained from site-directed mutagenesis and X-ray crystallography. 相似文献
6.
Małgorzata Geszke-Moritz Michał Moritz 《Materials science & engineering. C, Materials for biological applications》2013,33(3):1008-1021
Quantum dots (QDs) are semiconductor inorganic fluorescent nanocrystals in the size range between 1 and 20 nm. Due to their very small size, they possess unique properties and behave in different way than crystals in macro scale. The specificity of QDs makes them widespread in many branches of human life. The disciplines that took recently huge advantage from the development of nanotechnology are medicine and pharmacy. The creation of particles of very tiny sizes allowed these two sciences to develop or revolutionize the techniques of diagnosis or drug delivery. The most important feature for application of fluorescent nanocrystals in medical and pharmaceutical sciences is their high surface to volume ratio enabling QDs' conjugation to multiple ligands. Other properties of great importance are dispersibility and water stability, high and not easy quenched fluorescence, biocompatibility, and small and uniform sizes. In this review with ca. 200 references the recent developments in QD synthesis, surface modification, QD-based bioimaging, biotracking of drug molecules, biosensing and photodynamic therapy are summarized. 相似文献
7.
Statistical models for protein validation using tandem mass spectral data and protein amino acid sequence databases 总被引:1,自引:0,他引:1
The purpose of this work is to develop and verify statistical models for protein identification using peptide identifications derived from the results of tandem mass spectral database searches. Recently we have presented a probabilistic model for peptide identification that uses hypergeometric distribution to approximate fragment ion matches of database peptide sequences to experimental tandem mass spectra. Here we apply statistical models to the database search results to validate protein identifications. For this we formulate the protein identification problem in terms of two independent models, two-hypothesis binomial and multinomial models, which use the hypergeometric probabilities and cross-correlation scores, respectively. Each database search result is assumed to be a probabilistic event. The Bernoulli event has two outcomes: a protein is either identified or not. The probability of identifying a protein at each Bernoulli event is determined from relative length of the protein in the database (the null hypothesis) or the hypergeometric probability scores of the protein's peptides (the alternative hypothesis). We then calculate the binomial probability that the protein will be observed a certain number of times (number of database matches to its peptides) given the size of the data set (number of spectra) and the probability of protein identification at each Bernoulli event. The ratio of the probabilities from these two hypotheses (maximum likelihood ratio) is used as a test statistic to discriminate between true and false identifications. The significance and confidence levels of protein identifications are calculated from the model distributions. The multinomial model combines the database search results and generates an observed frequency distribution of cross-correlation scores (grouped into bins) between experimental spectra and identified amino acid sequences. The frequency distribution is used to generate p-value probabilities of each score bin. The probabilities are then normalized with respect to score bins to generate normalized probabilities of all score bins. A protein identification probability is the multinomial probability of observing the given set of peptide scores. To reduce the effect of random matches, we employ a marginalized multinomial model for small values of cross-correlation scores. We demonstrate that the combination of the two independent methods provides a useful tool for protein identification from results of database search using tandem mass spectra. A receiver operating characteristic curve demonstrates the sensitivity and accuracy level of the approach. The shortcomings of the models are related to the cases when protein assignment is based on unusual peptide fragmentation patterns that dominate over the model encoded in the peptide identification process. We have implemented the approach in a program called PROT_PROBE. 相似文献
8.
S. Sánchez-Valdes E. Ramírez-Vargas M.C. Ibarra-Alonso L.F. Ramos de Valle J. Méndez-Nonell F.J. Medellín-Rodríguez J.G. Martínez-Colunga S. Vazquez-Rodriguez R. Betancourt-Galindo 《Composites Part B》2012,43(2):497-502
The compatibilization provided by itaconic acid (IA) and 2-[2-(dimethylamino)-ethoxy] ethanol (DMAE) functionalized polyethylene for forming polyethylene-based nanocomposites was studied and compared. IA was grafted into PE by melt mixing to obtain PEgIA (compatibilizer 1), thereafter, PEgIA was reacted with DMAE also by melt mixing to obtain PAgDMAE (compatibilizer 2). PE-clay nanocomposites were prepared by melt mixing polyethylene with each of the two quaternary ammonium modified montmorillonite clays (Cloisite 30B and Nanomer I28E) plus each of the two previously prepared compatibilizers (PEgIA and PEgDMAE). FTIR characterization confirmed the formation of these two compatibilizers. All the compatibilized nanocomposites had better clay exfoliation–intercalated compared to the uncompatibilized PE nanocomposites. X-ray diffraction and transmission electron microscopy results, as well as the mechanical properties attained showed that the PEgDMAE with the I28E clay produced the better exfoliated–intercalated nanocomposites. Samples with C30B clay did not show any intercalation improvement, as compared to the uncompatibilized samples, which was attributed mainly to the smaller initial intergallery spacing of this clay. Finally, it is concluded that the PEgDMAE offers an outstanding capability for preparing highly exfoliated PE clay nanocomposites. 相似文献
9.
Ion mobility spectrometry (IMS), and particularly differential or field asymmetric waveform IMS (FAIMS), was recently shown capable of separating peptides with variant localization of post-translational modifications. However, that work was limited to a model peptide with Ser phosphorylation on fairly distant alternative sites. Here, we demonstrate that FAIMS (coupled to electrospray/mass spectrometry (ESI/MS)) can broadly baseline-resolve variant phosphopeptides from a biologically modified human protein, including those involving phosphorylation of different residues and adjacent sites that challenge existing tandem mass spectrometry (MS/MS) methods most. Singly and doubly phosphorylated variants can be resolved equally well and identified without dissociation, based on accurate separation properties. The spectra change little over a range of infusion solvent pH; hence, the present approach should be viable in conjunction with chromatographic separations using mobile phase gradients. 相似文献
10.
Electron capture dissociation (ECD) of proteins in Fourier transform ion cyclotron resonance mass spectrometry usually leads to charge reduction and backbone-bond cleavage, thereby mostly retaining labile, intramolecular noncovalent interactions. In this report, we evaluate ECD of the 84-kDa noncovalent heptameric gp31 complex and compare this with sustained off-resonance irradiation collisionally activated dissociation (SORI-CAD) of the same protein. Unexpectedly, the 21+ charge state of the gp31 oligomer exhibits a main ECD pathway resulting in a hexamer and monomer, disrupting labile, intermolecular noncovalent bonds and leaving the backbone intact. Unexpectedly, the charge separation over the two products is highly proportional to molecular weight. This indicates that a major charge redistribution over the subunits of the complex does not take place during ECD, in contrast to the behavior observed when using SORI-CAD. We speculate that the ejected monomer retains more of its original structure in ECD, when compared to SORI-CAD. ECD of lower charge states of gp31 does not lead to dissociation of noncovalent bonds. We hypothesize that the initial gas-phase structure of the 21+ charge state is significantly different from the lower charge states. These structural differences result in the different reaction pathways when using ECD. 相似文献
11.
The inhibition effect of five amino acids (AA) on the corrosion of copper in molar nitric solution was studied by using weight loss and electrochemical polarization measurements. Valine (Val) and Glycine (Gly) accelerate the corrosion process; but Arginine (Arg), Lysine (Lys) and Cysteine (Cys) inhibit the corrosion phenomenon. Cysteine is the best inhibitor. Its efficiency increases with the concentration to attain 61% at 10− 3 M. Correlation between the quantum chemical calculations and inhibition efficiency was discussed using semi-empirical methods (AM1 and MNDO). 相似文献
12.
Jia-jun Fu Su-ning Li Ying Wang Lin-hua Cao Lu-de Lu 《Journal of Materials Science》2010,45(22):6255-6265
The corrosion inhibition behaviour of four selected amino acid compounds, namely l-cysteine, l-histidine, l-tryptophan and l-serine on mild steel surface in deaerated 1 M HCl solution were studied electrochemically by Tafel polarization and electrochemical
impedance spectroscopy methods and computationally by the quantum chemical calculation and molecular dynamics simulation.
Electrochemical results show that these amino acid compounds inhibit the corrosion of mild steel in 1 M HCl solution significantly.
The order of inhibition efficiency of these inhibitors follows the sequence: l-tryptophan > l-histidine > l-cysteine > l-serine. The quantum chemical calculations were performed to characterize the electronic parameters which are associated with
inhibition efficiency. The molecular dynamics simulations were applied to find the equilibrium adsorption configurations and
calculate the interaction energy between inhibitors and iron surface. Results obtained from Tafel and impedance methods are
in good agreement. The electrochemical experimental results are supported by the theoretical data. 相似文献
13.
Mousseau G Thomas OP Oppilliart S Coirier A Salcedo-Serna A Thai R Beau F Renault JP Pin S Cintrat JC Rousseau B 《Analytical chemistry》2007,79(14):5444-5448
A general strategy to localize and quantify carbon-centered radicals within proteins is described. The methodology was first exemplified on amino acids and then on a peptide. This method is applicable to any protein system regardless of size, and the site of hydrogen abstraction by *OH on all residues within proteins is easily and accurately detected. 相似文献
14.
Immobilization of proteins in a functionally active form and proper orientation is crucial for effective surface-based analysis of proteins. Here we present a general method for controlled and oriented immobilization of protein by site-specific incorporation of unnatural amino acid and click chemistry. The utility and potential of this method was demonstrated by applying it to the analysis of interaction between a pathogenic protein DrrA of Legionella pneumophila and its binding partner Rab1 of human. Kinetic analysis of Rab1 binding onto the DrrA-immobilized surfaces using surface plasmon resonance revealed that immobilization of site-specifically biotinylated DrrA results in about 10-fold higher sensitivity in binding assay than the conventional immobilization of DrrA with random orientation. The present method is expected to find wide applications in the fields of the surface-based studies of protein-protein (or ligand) interactions, drug screening, biochip, and single molecule analysis. 相似文献
15.
16.
A homogeneous microplate assay for the serine/threonine protein phosphatases PP1 and PP2A, employing fluorescent-labeled phosphopeptides, has been developed. Phosphopeptides derived from a phosphoacceptor site in myelin basic protein were designed with a cysteine adjacent to the phosphoresidue, allowing site-selective labeling with dyes. The fluorescence emission from the environmentally sensitive fluorophore 7-fluorobenz-2-oxa-1,3-diazole-4-sulfonamide was found to be sensitive to the phosphorylation status of an adjacent threonine residue. Upon complete dephosphorylation of the dye-labeled phosphopeptide, a 56% decrease in fluorescence intensity was observed. The change in fluorescence was correlated with the release of inorganic phosphate from the phosphopeptide as measured using the malachite green assay. Conjugation of the fluorophore to the phosphopeptide was found to have no adverse effect on catalysis. A series of four phosphopeptide substrates were developed and characterized to probe PP1 and PP2A activity. The optimum phosphopeptides were then used to determine inhibition parameters for three natural protein phosphatase inhibitors. The use of a peptide-based approach has introduced a degree of specificity not observed with many conventional phosphatase substrates, while retaining the advantages of a real-time homogeneous fluorescence-based format, making the assay ideal for high-density screening. 相似文献
17.
18.
Tandem mass spectrometry has long been an intrinsic tool to determine phosphorylation sites in proteins. However, loss of the phosphate moiety from both phosphoserine and phosphothreonine residues in low-energy collision-induced dissociation is a common phenomenon, which makes identification of P-Ser and P-Thr residues complicated. A method for direct sequencing of the Ser and Thr phosphorylation sites by ESI tandem mass spectrometry following beta-elimination/sulfite addition to convert -HPO4 to -SO3 has been studied. Five model phosphopeptides, including three synthetic P-Ser-, P-Thr-, or P-Ser- and P-Thr-containing peptides; a protein kinases C-phosphorylated peptide; and a phosphopeptide derived from beta-casein trypsin digests were modified and then sequenced using an ESI-quadrupole ion trap mass spectrometer. Following incubation of P-Ser- or P-Thr-containing peptides with Na2SO3/NaOH, 90% P-Ser and 80% P-Thr was converted to cysteic acid and beta-methylcysteic acid, respectively, as revealed by amino acid analysis. The conversion can be carried out at 1 microM concentration of the peptide. Both cysteic acid and beta-methylcysteic acid residues in the sequence were shown to be stable and easily identifiable under general conditions for tandem mass spectrometric sequencing applicable to common peptides. 相似文献
19.
Michaud M Jourdan E Ravelet C Villet A Ravel A Grosset C Peyrin E 《Analytical chemistry》2004,76(4):1015-1020
Recently, we described the use of a DNA aptamer as a new target-specific chiral stationary phase (CSP) for the separation of oligopeptide enantiomers (Michaud, M.; Jourdan, E.; Villet, A.; Ravel, A.; Grosset, C.; Peyrin, E. J. Am. Chem. Soc. 2003, 125, 8672). However, from a practical point of view, it was fundamental to extend the applicability of such target-specific aptamer CSP to the resolution of small (bioactive) molecule enantiomers. In this paper, immobilized DNA aptamers specifically selected against D-adenosine and L-tyrosinamide were used to resolve the enantiomers by HPLC, using microbore columns. At 20 degrees C, the adenosine enantioseparation was similar to that classically reported with imprinted CSPs (approximately 3.5) while a very high enantioselectivity was observed for the tyrosinamide enantiomers (the nontarget enantiomer was essentially nonretained on the CSP). The influence of temperature on solute binding and chiral discrimination was analyzed. The binding enthalpic contributions were determined from linear van't Hoff plots. Very large DeltaH values were obtained for the target enantiomers (-71.4 +/- 0.7 kJ/mol for D-adenosine and -139.4 +/- 2.0 kJ/mol for L-tyrosinamide). Such values were consistent with the formation of a tight complex between these analytes and the aptamer CSPs. This work demonstrates that target-specific aptamer CSPs constitute a powerful tool for the resolution of small (bioactive) molecule enantiomers. 相似文献
20.
13C-Based metabolic flux analysis provides valuable information about bacterial physiology. Though many biological processes rely on the synergistic functions of microbial communities, study of individual organisms in a mixed culture using existing flux analysis methods is difficult. Isotopomer-based flux analysis typically relies on hydrolyzed amino acids from a homogeneous biomass. Thus, metabolic flux analysis of a given organism in a mixed culture requires its separation from the mixed culture. Swift and efficient cell separation is difficult and a major hurdle for isotopomer-based flux analysis of mixed cultures. Here we demonstrate the use of a single highly expressed protein to analyze the isotopomer distribution of amino acids from one organism. Using the model organism Escherichia coli expressing a plasmid-borne, His-tagged green fluorescent protein (GFP), we show that induction of GFP does not affect E. coli growth kinetics or the isotopomer distribution in nine key metabolites. Further, the isotopomer labeling patterns of amino acids derived from purified GFP and total cell protein are indistinguishable, indicating that amino acids from a purified protein can be used to infer metabolic fluxes of targeted organisms in a mixed culture. This study provides the foundation to extend isotopomer-based flux analysis to study metabolism of individual strains in microbial communities. 相似文献