首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
中文文本体裁分类中特征选择的研究   总被引:2,自引:2,他引:2       下载免费PDF全文
针对文本体裁自动分类在特征选择和权重计算方面的特殊性,提出文本的内容类别信息,改进传统特征选择方法CHI以及权重计算公式tf.idf,并运用支持向量机在含5类体裁的语料上进行中文文本体裁自动分类。实验结果表明,该方案是可行的。  相似文献   

2.
本文研究了文档频率DF、信息增益IG、互信息MI、x2分布(CHI)、期望交叉熵、优势率、文本证据权七种不同的特征选取方法。针对DF对高频词过于依赖,以及MI,IG和CHI对低频词过于依赖这一特点,试验了将它们组合起来形成DF—MI,DF-IG两种组合式特征选择方法,同时针对DF的特点提出了新的特征选取方法DFR,用KNN分类器试验了几种组合方法和DFIK方法,实验结果表明DFIK较DF—MI、DF—IG对分类效果有明显的提高,而组合特征选取方法较单个特征选取方法对分类器的分类效果有了很大的提高。  相似文献   

3.
基于支持向量机的中文文本自动分类研究   总被引:17,自引:0,他引:17  
都云琪  肖诗斌 《计算机工程》2002,28(11):137-138,F003
根据文本数据学习的特点,采用线性支持向量机(LSVM)学习算法,实现了一个中文文本自动分类系统,并对该系统进行了针对大规模真实文本的试验测试,结果发现,系统的招回率较低,而准确率较高,该文对此结果进行了分析,并提出一种采用训练中拒识样本信息对分类器输出进行改进的方法,试验表明,该方法有效地提高了系统的性能,取得了令人满意的结果。  相似文献   

4.
本文研究了文档频率DF、信息增益IG、互信息MI、x2分布(CHI)、期望交叉熵、优势率、文本证据权七种不同的特征选取方法.针对DF对高频词过于依赖,以及MI,IG和CHI对低频词过于依赖这一特点,试验了将它们组合起来形成DF-MI,DF-IG两种组合式特征选择方法-同时针对DF的特点提出了新的特征选取方法DFR-用KNN分类器试验了几种组合方法和DFR方法-实验结果表明DFR较DF-MI、DF-IG对分类效果有明显的提高,而组合特征选取方法较单个特征选取方法对分类器的分类效果有了很大的提高.  相似文献   

5.
中文文本分类中特征选择方法的比较   总被引:1,自引:0,他引:1  
在自动文本分类系统中,特征选择是有效的降维数方法.通过实验对中文文本分类中的特征选择方法逐一进行测试研究,力图确定较优的中文文本分类特征选择方法.根据实验得出:在所测试的所有特征选择方法中,统计方法的分类性能最好,其次为信息增益(IG),交叉熵(CE)和文本证据权(WE)也取得了较好的效果,互信息(MI)较差.  相似文献   

6.
文本分类中的特征抽取   总被引:52,自引:3,他引:52  
特征提取是用机器学习方法进行文本分类的重点和难点。文中比较了目前几种最常用的特征抽取方法,提出了一种改进型的互信息特征抽取方法,并在构建的实验系统中比较了这几种特征抽取方法,发现改进的特征抽取方法是有效可行的。  相似文献   

7.
支持向量机的中文文本分类研究   总被引:9,自引:0,他引:9  
支持向量机是一种基于统计学习理论的新型机器学习方法,在文本分类领域取得了很好的效果。使用支持向量机进行了文本分类的研究,实现了一个中文文本自动分类系统,并给出了实验结果。  相似文献   

8.
中文文本分类中的特征选择研究   总被引:76,自引:3,他引:76  
本文介绍和比较了八种用于文本分类的特征选择方法,其中把应用于二元分类器中的优势率改造成适用于多类问题的形式,并提出了一种新的类别区分词的特征选择方法,结合两种不同的分类方法:文本相似度方法和Na?ve Bayes方法,在两个不同的数据集上分别作了训练和测试,结果表明,在这八种文本特征选择方法中,多类优势率和类别区分词方法取得了最好的选择效果。其中,当用Na?ve Bayes分类方法对各类分布严重不均的13890样本集作训练和测试时,当特征维数大于8000以后,用类别区分词作特征选择得到的宏F1值比用IG作特征选择得到的宏F1值高出3%~5%左右。  相似文献   

9.
用于文本分类和文本聚类的特征抽取方法的研究   总被引:2,自引:0,他引:2  
文本信息处理已成为一门日趋成熟、应用面日趋广泛的学科.文本分类和聚类技术是应信息检索和查询需要而出现的自然语言处理领域的重要研究课题.面对急速膨胀的各种文本信息,通过使用文本分类和聚类技术,人们能对这些信息进行高效地组织和整理,以便于实现信息的准确定位和分流,从而提高用户查询和检索的效率.本文针对文本信息处理中最重要的研究方向--文本分类和聚类技术展开了研究,分析了特征抽取法在文本分类和文本聚类中应用的重要性,以及论证了为何要对文本进行特征抽取,最后分别阐述了用于文本分类和文本聚类的特征抽取方法.  相似文献   

10.
一个面向文本分类的中文特征词自动抽取方法   总被引:1,自引:0,他引:1  
文章根据主流文本分类模型只对词频敏感、且只关注中高频词条的特点,设计实现了一个基于多步过滤汉字结合模式的无词典特征词自动抽取方法,并通过实验与传统的词典分词法进行了比较,结果表明,这种方法对于中高频词条的识别率接近于词典分词法,而分词速度则远远高于词典分词法,能够满足对大规模开放域文本进行快速特征词自动抽取的需求。  相似文献   

11.
目前常用向量空间模型VSM表示文档,造成的高维问题制约其实际应用的效果。在研究现有的特征降维技术的基础上,对部分常用的特征提取方法做简要的分析,综合类间集中度、类内分散度、反文档频率,提出一种新的特征选择方法,通过实验验证该特征选择方法的有效性。  相似文献   

12.
KNN文本分类算法研究   总被引:4,自引:0,他引:4  
KNN(K-NearestNeighbour)是向量空间模型中最好的文本分类算法之一。文中介绍了KNN算法的基本思想,归纳了针对KNN算法的不足而提出的改进算法。对KNN文本分类算法的理论研究和实际应用起了指导作用。  相似文献   

13.
文本分类中特征选择的约束研究   总被引:7,自引:0,他引:7  
特征选择在文本分类中起重要的作用.文档频率(DF)、信息增益(IG)和互信息(MI)等特征选择方法在文本分类中广泛应用.已有的实验结果表明,IG是最有效的特征选择算法之一,DF稍差而MI效果相对较差.在文本分类中,现有的特征选择函数性能的评估均是通过实验验证的方法,即完全是基于经验的方法,为此提出了一种定性地评估特征选择函数性能的方法,并且定义了一组与分类信息相关的基本的约束条件.分析和实验表明,IG完全满足该约束条件,DF不能完全满足,MI和该约束相冲突,即一个特征选择算法的性能在实验中的表现与它是否满足这些约束条件是紧密相关的.  相似文献   

14.
特征选择是中文文本分类过程中的一个关键环节,文本特征项选择的优劣将直接影响文本分类的准确率。针对传统的特征选择算法没有考虑到特征项的类别区分度在特征选择中的作用而丧失了一些优秀的特征项的问题,文中通过引入特征项的类别区分度对传统的特征选择算法进行改进。实验结果表明,改进方法的分类效果要好于传统方法,从而验证了改进方法的有效性和可行性。  相似文献   

15.
雷军程  黄同成  柳小文 《计算机科学》2012,39(7):250-252,275
在分析比较几种常用的特征选择方法的基础上,提出了一种引入文本类区分加权频率的特征选择方法TFIDF_Ci。它将具体类的文档出现频率引入TFIDF函数,提高了特征项所在文档所属类区分其他类的能力。实验中采用KNN分类算法对该方法和其他特征选择方法进行了比较测试。结果表明,TFIDF_Ci方法较其他方法在不同的训练集规模情况下具有更高的分类精度和稳定性。  相似文献   

16.
文本分类中的特征选取   总被引:21,自引:0,他引:21  
刘丽珍  宋瀚涛 《计算机工程》2004,30(4):14-15,175
研究了文本分类学习中的特征选取,主要集中在大幅度降维的评估函数,因为高维的特征集对分类学习未必全是重要的和有用的。还介绍了分类的一些方法及其特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号