首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Thymic epithelium is involved in negative selection, but its precise role in selecting the CD4 T cell repertoire remains elusive. By using two transgenic mice, we have investigated how medullary thymic epithelium (mTE) and bone marrow (BM)-derived cells contribute to tolerance of CD4 T cells to nuclear beta-galactosidase (beta-gal). CD4 T cells were not tolerant when beta-gal was expressed in thymic BM-derived cells. In contrast, CD4 T cells of mice expressing beta-gal in mTE were tolerized. Tolerance resulted from presentation of endogenous beta-gal by mTE cells but not from cross-priming. mTE cells presented nuclear beta-gal to a Th clone in vitro, while thymic dendritic cells did not. The data indicate that mTE but not thymic BM-derived cells can use a MHC class II endogenous presentation pathway to induce tolerance to nuclear proteins.  相似文献   

2.
Expression of the H-2Dd-specific inhibitory receptor Ly49A on murine NK cells is subject to MHC class I-dependent modulation in vivo. As a result, NK cells in H-2Dd-transgenic mice express low cell surface levels of Ly49A, whereas NK cells from nontransgenic C57BL/6 (B6) mice express high levels. The purpose of this study was to assess the role of MHC class I molecules on the NK cell itself vs those on surrounding cells in this calibration and to test whether the Ly49A levels are subject to regulation in mature NK cells also. Analysis of transgenic mice with mosaic expression of an H-2Dd/Ld transgene showed that MHC class I molecules on surrounding cells (external ligands) and on the NK cell itself (internal ligands) played distinct roles in the determination of Ly49A levels. External ligands were involved in down-regulation of Ly49A levels in vivo, whereas internal ligands kept the down-regulated levels of Ly49A low upon NK cell activation in vitro. Furthermore, in an experimental system based on adoptive transfer of spleen cells, receptor down-regulation of Ly49A occurred as a rapid adaptation process in mature NK cells after interaction with the H-2Dd ligand in vivo. This suggests that Ly49 levels are not fixed but can be changed in mature NK cells when they are exposed to a changed MHC class I environment.  相似文献   

3.
T cell tolerance to parenchymal self-antigens is thought to be induced by encounter of the T cell with its cognate peptide-major histocompatibility complex (MHC) ligand expressed on the parenchymal cell, which lacks appropriate costimulatory function. We have used a model system in which naive T cell receptor (TCR) transgenic hemagglutinin (HA)-specific CD4+ T cells are adoptively transferred into mice expressing HA as a self-antigen on parenchymal cells. After transfer, HA-specific T cells develop a phenotype indicative of TCR engagement and are rendered functionally tolerant. However, T cell tolerance is not induced by peptide-MHC complexes expressed on parenchymal cells. Rather, tolerance induction requires that HA is presented by bone marrow (BM)-derived cells. These results indicate that tolerance induction to parenchymal self-antigens requires transfer to a BM-derived antigen-presenting cell that presents it to T cells in a tolerogenic fashion.  相似文献   

4.
The TCRs expressed on T lymphocytes recognize foreign peptides bound to MHC molecules. This reactivity is the basis of specific immune response to the foreign Ag. How such specificities are generated in the thymus is still being debated. Signals generated through TCR upon interaction with self MHC-peptide complexes are critical for maturation of the CD4+ helper and CD8+ cytotoxic subsets. We have observed maturation of CD4+ but not CD8+ T cells in Ly-6A.2 transgenic MHC null mice. Since there can be no interactions with MHC molecules in these mice, these CD4+ cells must express the T cell repertoire that exists before positive and negative selection. Interestingly, despite an absence of selection by MHC molecules, the CD4+ cells that mature recognize MHC molecules at a frequency as high as in CD4+ cells in normal mice. These results demonstrate that: 1) the germline sequences encoding TCRs are biased toward reactivity to MHC molecules; and 2) CD4+ cells as opposed to CD8+ cells have distinct lineage commitment signals. These results also suggest that signals originating from Ly-6 can promote or substitute for signals generated from TCR that are required for positive selection. Moreover, this animal model offers a system to study T cell development in the thymus that can provide insights into mechanisms of lineage commitment in developing T cells.  相似文献   

5.
The expression of certain major histocompatibility complex (MHC) class I ligands on target cells is one important determinate of their susceptibility to lysis by natural killer (NK) cells. NK cells express receptor molecules that bind to MHC class I. Upon binding to their MHC class I ligand, the NK cell is presumed to receive a signal through its receptor that inhibits lysis. It is unclear what role the MHC class I molecules of the effector and target cells play in signaling to the NK cell. We have investigated the role of the cytoplasmic and transmembrane domains of MHC class I molecules by producing a glycosylphosphatidylinositol (GPI)-linked H-2Dd molecule. The GPI-linked H-2Dd molecule is recognized by H-2Dd-specific antibodies and cytotoxic T lymphocytes. Expression of the GPI-linked H-2Dd molecule on H-2b tumor cells resulted in protection of the tumor cells after transplantation into D8 mice (H-2b, H-2Dd) from rejection by NK cells. In addition, NK cells from mice expressing the GPI-linked H-2Dd molecule as a transgene were able to kill nontransgenic H-2b lymphoblast target cells. The GPI-linked MHC class I molecule was able to alter NK cell specificity at the target and effector cell levels. Thus, the expression of the cytoplasmic and transmembrane domains of MHC class I molecules are not necessary for protection and alteration of NK cell specificity.  相似文献   

6.
The T cell coreceptors CD4 and CD8 enhance T cell responses to TCR signals by participating in complexes containing TCR, coreceptor, and MHC molecules. These ternary complexes are also hypothesized to play a seminal role during T cell development, although the precise timing, frequency, and consequences of TCR-coreceptor-MHC interactions during positive selection and lineage commitment remain unclear. To address these issues, we designed transgenic mice expressing mutant I-Ek molecules with reduced CD4-binding capability. These transgenic lines were crossed to three different lines of I-Ek-specific TCR transgenic mice, and the efficiency of production of CD4+ lineage cells in the doubly transgenic progeny was assessed. Surprisingly, replacing wild-type I-Ek molecules with these mutant molecules did not affect the production of CD4+CD8- thymocytes or CD4+ peripheral T cells expressing any of the three TCRs examined. These data, when considered together with other experiments addressing the role of coreceptor during development, suggest that not all MHC class II-specific thymocytes require optimal and simultaneous TCR-CD4-MHC interactions to mature. Alternatively, it is possible that these particular alterations of I-Ek do not disrupt the CD4-MHC interaction adequately, potentially indicating functional differences between I-A and I-E MHC class II molecules.  相似文献   

7.
Using a clonal assay of bone marrow (BM) cells from transgenic mice (Tg-mice) expressing the human granulocyte-macrophage colony-stimulating factor receptor (hGM-CSFR), we found in earlier studies that hGM-CSF alone supported the development not only of granulocyte-macrophage colonies, but also of erythrocytes, megakaryocytes, mast cells, blast cells, and mixed hematopoietic colonies. In this report, we evaluated the in vivo effects of hGM-CSF on hematopoietic and lymphopoietic responses in the hGM-CSFR Tg-mice. Administration of this factor to Tg-mice resulted in dose-dependent increases in numbers of reticulocytes and white blood cells (WBCs) in the peripheral blood. Morphological analysis of WBCs showed that the numbers of all types of the cell, including neutrophils, eosinophils, monocytes, and lymphocytes increased; the most remarkable being in lymphocytes that contained a number of large granular lymphocytes (LGLs) in addition to mature T and B cells. However, total cellularity of the BM of the Tg-mice decreased in a dose-dependent manner when hGM-CSF was injected. In sharp contrast to the BM, spleens of the Tg-mice were grossly enlarged. Although all types of blood cells and hematopoietic progenitors increased in the spleen, erythroid cells and their progenitors showed the most significant increase. Increased numbers of megakaryocytes and LGLs were also observed in spleen and liver of the treated Tg-mice. Flow cytometric analysis showed that LGLs expanded in Tg-mice expressed Mac-1+ CD3- NK1.1+. The thymus of Tg-mice treated with hGM-CSF exhibited a dose-dependent shrinkage and a remarkable decrease in CD4+ CD8+ cells. Thus, hGM-CSF stimulated not only myelopoiesis but also erythropoiesis and megakaryopoiesis of hGM-CSFR Tg-mice in vivo, in accordance with our reported in vitro findings. In addition, hGM-CSF affected the development of lymphoid cells, including natural killer cells of these Tg-mice.  相似文献   

8.
T cell tolerance to superantigen can be mediated by clonal anergy in which Ag-specific mature T cells are physically present but are not able to mount an immune response. We induced T cell unresponsiveness to minor lymphocyte stimulations locus antigen (Mls)-1a in mice transgenic for TCR V beta 8.1 in three different systems: 1) injection of Mls-1a spleen cells, 2) mating with Mls-1a mice, and 3) bone marrow (BM) chimeras in which Mls-1a is present only on nonhematopoietic cells. CD4+8-V beta 8.1+ cells from all these groups did not proliferate in response to irradiated spleen cells from Mls-1a mice. We compared the response of these cells by T cell/stimulator cell conjugate formation, Ca2+ mobilization, and proliferation assays. The mechanisms underlying the unresponsiveness of these T cells appear to differ. CD4+8-V beta 8.1+ cells from Mls-1a spleen cell-injected mice mobilized cytoplasmic Ca2+ but proliferated at a reduced level in response to cross-linking with anti-TCR mAb. However, these cells formed conjugates, mobilized Ca2+, and proliferated in response to Mls-1a when activated B cells were used as stimulators, although they produced reduced levels of IL-2. In Mls-1a/b V beta 8.1 transgenic mice, a subset in CD4+8-V beta 8.1+ cells did not mobilize cytoplasmic Ca2+ after TCR cross-linking. Their conjugate formation, Ca2+ mobilization, or proliferation in response to Mls-1a on activated B cells was undetectable. Finally, CD4+8-V beta 8.1+ cells from the BM chimeras proliferated to TCR cross-linking at a partially reduced level and formed conjugates, mobilized Ca2+, and proliferated in response to Mls-1a on activated B cells. These features suggest that the mechanisms underlying the maintenance of anergy in Mls-1a spleen cell-injected mice are distinct from those in Mls-1a mice.  相似文献   

9.
Thymocytes must bind major histocompatibility complex (MHC) proteins on thymic epithelial cells in order to mature into either CD8+ cytotoxic T cells or CD4+ helper T cells. Thymic precursors express both CD8 and CD4, and it has been suggested that the intracellular signals generated by CD8 or CD4 binding to class I or II MHC, respectively, might influence the fate of uncommitted cells. Here we test the notion that intracellular signaling by CD4 directs the development of thymocytes to a CD4 lineage. A hybrid protein consisting of the CD8 extracellular and transmembrane domains and the cytoplasmic domain of CD4 (CD884) should bind class I MHC but deliver a CD4 intracellular signal. We find that expression of a hybrid CD884 protein in thymocytes of transgenic mice leads to the development of large numbers of class I MHC-specific, CD4 lineage T cells. We discuss these results in terms of current models for CD4 and CD8 lineage commitment.  相似文献   

10.
Prior studies in CD4-deficient mice established the capacity of T helper (Th) lineage cells to mature into Th1 cells. Unexpectedly, challenge of these mice with Nippostrongylus brasiliensis, a Th2-inducing stimulus, failed to result in the development of Th2 cells. Additional studies were performed using CD4+ or CD4-CD8- (double-negative) T cell receptor (TCR) transgenic T cells reactive to LACK antigen of Leishmania major. Double-negative T cells were unable to develop into Th2 cells in vivo, and, unlike CD4+ T cells, could not be primed for interleukin-4 production in vitro. Similarly, CD4+ TCR transgenic T cells primed on antigen-presenting cells expressing mutant MHC class II molecules unable to bind CD4 did not differentiate into Th2 cells. These data suggest that interactions between the TCR, MHC II-peptide complex and CD4 may be involved in Th2 development.  相似文献   

11.
Introduction of the MHC class I transgene H-2Dd on C57BL/6 (B6) background conveys NK cell-mediated "missing self" reactivity against transgene-negative cells, and down-regulates expression of the inhibitory receptors Ly49A and Ly49G2 in NK cells. We here present an analysis of transgenic mice expressing chimeric H-2Dd/Ld MHC class I transgenes, and show that the alpha1/alpha2 domains of H-2Dd were necessary and sufficient to induce "missing self" recognition and to down-modulate Ly49A and Ly49G2 receptors. In contrast, transgenes containing the alpha1/alpha2 domains of H-2Ld induced none of these changes, suggesting that not all MHC class I alleles in a host necessarily take part in NK cell education. The lack of effect of the alpha1/alpha2 domains of H-2Ld on NK cell specificity was surprising, considering that both H-2Ld and H-2Dd have been reported to interact with Ly49G2. Therefore, the role of H-2Ld for protection against NK cells expressing Ly49G2 was re-investigated in a transfection system. In contradiction to earlier reports, we show that H-2Dd, but not H-2Ld, abolished killing by sorted Ly49G2+ NK cells, indicating that H-2Ld does not inhibit NK cells via the Ly49G2 receptor.  相似文献   

12.
Previous experiments showed that peptides corresponding to a major CD4-binding site on the beta2 domain of MHC class II molecules, IAbeta134-148, enhance responses by CD4+ T lymphocytes to antigen, allo-antigen and bacterial superantigen in vitro, and to soluble protein in vivo. To determine whether peptide IAbeta134-148 acted by inhibiting antigen-induced T cell tolerance, ovalbumin-specific CD4+ lymph node (LN) T cells from TCR transgenic DO.11.10 mice were adoptively transferred into H-2 syngeneic BALB/c recipients. Tolerance was then induced by injecting antigen i.v. When peptide IAbeta134-148 was used to interfere with CD4-MHC class II interactions, accumulation of clonotype-positive T lymphocytes in the LN and induction of T cell tolerance in vivo were delayed. The mechanism by which peptide IAbeta134-148 inhibited T cell tolerance included the peptide's ability to block activation-induced cell death. Further, antigen-specific splenic T lymphocytes were not tolerized in IAbeta134-148-treated mice, providing a reservoir of T cells that could respond to a secondary immunization. The results reported here suggest that participation of the T cell co-receptor, CD4, in TCR signaling differentially affected both T cell migration and the induction of antigen-specific tolerance. Therefore, in this in vivo model system, the combined strength of all signals received (e.g. via TCR, co-receptors and co-stimulators) determined whether T cell immunity or apoptosis and tolerance resulted from antigenic stimulation. These findings are potentially important for the development of reagents to enhance vaccine efficacy and tumor immunity.  相似文献   

13.
In vivo expansion and multilineage outgrowth of human immature hematopoietic cell subsets from umbilical cord blood (UCB) were studied by transplantation into hereditary immunodeficient (SCID) mice. The mice were preconditioned with Cl2MDP-liposomes to deplete macrophages and 3.5 Gy total body irradiation (TBI). As measured by immunophenotyping, this procedure resulted in high levels of human CD45(+) cells in SCID mouse bone marrow (BM) 5 weeks after transplantation, similar to the levels of human cells observed in NOD/SCID mice preconditioned with TBI. Grafts containing approximately 10(7) unfractionated cells, approximately 10(5) purified CD34+ cells, or 5 x 10(3) purified CD34+CD38- cells yielded equivalent numbers of human CD45+ cells in the SCID mouse BM, which contained human CD34+ cells, monocytes, granulocytes, erythroid cells, and B lymphocytes at different stages of maturation. Low numbers of human GpA+ erythroid cells and CD41+ platelets were observed in the peripheral blood of engrafted mice. CD34+CD38+ cells (5 x 10(4)/mouse) failed to engraft, whereas CD34- cells (10(7)/mouse) displayed only low levels of chimerism, mainly due to mature T lymphocytes. Transplantation of graded numbers of UCB cells resulted in a proportional increase of the percentages of CD45+ and CD34+ cells produced in SCID mouse BM. In contrast, the number of immature, CD34+CD38- cells produced in vivo showed a second-order relation to CD34+ graft size, and mice engrafted with purified CD34+CD38- grafts produced 10-fold fewer CD34+ cells without detectable CD34+CD38- cells than mice transplanted with equivalent numbers of unfractionated or purified CD34+ cells. These results indicate that SCID repopulating CD34+CD38- cells require CD34+CD38+ accessory cell support for survival and expansion of immature cells, but not for production of mature multilineage progeny in SCID mouse BM. These accessory cells are present in the purified, nonrepopulating CD34+CD38+ subset as was directly proven by the ability of this fraction to restore the maintenance and expansion of immature CD34+CD38- cells in vivo when cotransplanted with purified CD34+CD38- grafts. The possibility to distinguish between maintenance and outgrowth of immature repopulating cells in SCID mice will facilitate further studies on the regulatory functions of accessory cells, growth factors, and other stimuli. Such information will be essential to design efficient stem cell expansion procedures for clinical use.  相似文献   

14.
The importance of the species of different domains of class I MHC molecules in peripheral T cell recognition and positive and negative selection was evaluated in a single system. In transgenic mice expressing AAD (containing the alpha1+alpha2 domains of HLA-A2.1 and the alpha3 domain of H-2Dd), the CTL response to influenza peptide M1(58-66) in the context of the alpha1+alpha2 domains of HLA-A2.1 was as strong as the influenza-specific H-2Db-restricted response. However, this strong response was only discernible if the target cell MHC molecule also contained a murine alpha3 domain. In contrast, the response in HLA-A2.1 transgenic mice was about 30-fold weaker, and these CTL were indifferent to the origin of the target molecule alpha3 domain. Further analysis suggested that the major impact of the murine alpha3 domain of the transgene product was to enhance positive selection of a low affinity population of AAD-restricted T cells, presumably through species-specific interaction with CD8. Surprisingly, the response to non-self human class I MHC determinants was not augmented in AAD mice, indicating that the T cells selected are narrowly focused on AAD-related structures. Further analysis indicated that the alphal+alpha2 domains as well as the alpha3 domain influenced the magnitude of the response to non-self human class I MHC determinants, and this effect was mapped to alpha2. We suggest that the alpha2 domains of murine class I molecules contain conserved structural elements that augment the avidity of T cell-class I interactions, and this is particularly important in the recognition of non-self MHC molecules.  相似文献   

15.
BACKGROUND & AIMS: The intestinal epithelial compartment is populated by CD8(+) alpha beta and gamma delta intraepithelial lymphocytes (IELs), which monitor the integrity of the epithelial barrier. alpha beta IELs are activated by peptide antigens presented by class I major histocompatibility complex (MHC) molecules, but it is unclear how gamma delta IELs are activated. METHODS: G8 T-cell receptor (TCR) gamma delta transgenic (Tg) mice (specific for the class I MHC alloantigen, T22/10(b)) were crossed to class I MHC-deficient beta2-microglobulin-knockout (beta2m degrees) mice, and Tg+ IELs were examined for relative yields and surface and functional phenotype. RESULTS: Evidence for class I MHC-induced activation of Tg+ IELs was supported by the detection of 4-fold greater numbers of Tg+ IELs in G8 x beta2m+ mice that proliferated at 15-fold higher levels than IELs from G8 x beta2m degrees mice. However, expression of CD69, production of cytokine (interleukin 2 and interferon gamma), and detection of cytolytic function for IELs in G8 x beta2m degrees mice suggested that class I MHC was not required for gamma delta IEL development or maturation. CONCLUSIONS: These results suggest that CD8(+) TCR gamma delta IELs do not require class I MHC for development but support the notion that antigens presented by class I MHC molecules are involved in the peripheral expansion and differentiation of this subset.  相似文献   

16.
We asked whether, as in humans, a population of antigen-presenting macrophages infiltrates the epidermis of ultraviolet (UV)-exposed BALB/c mice. Using three-color flow cytometry on cell suspensions plus in situ immunofluorescence microscopy, the phenotype of normal Langerhans cells was class II major histocompatibility complex (MHC+), CD11b+, NLDC-145+, BM8+ CD45+ and homogeneous. By contrast, in epidermal cells harvested 3 d following UV (UV-EC), there were two subsets of class II MHC+ cells: 1) class II MHChi CD11b+, and 2) class II MHClo CD11b-. Neither expressed the Langerhans cell markers BM8 and NLDC-145. In addition, there were two major populations of class II MHC- CD11b+ cells; half of these expressed the GR-1 neutrophil marker. Langerhans and dendritic epidermal T cells were markedly reduced after UV injury. By electron microscopy, immunomagnetic bead-purified CD11b+ cells in UV-EC were comprised of neutrophils, differentiated macrophages, and mononuclear cells with prominent lysosomes, but no Birbeck granules; the class II MHC+ subset resembled a monocytic cell in between differentiated macrophages and indeterminate dendritic cells. Functionally, immediately following in vivo UV exposure, the allogeneic antigen-presenting cell capacity of UV-EC was reduced to 21 +/- 6% of control epidermal cells (C-EC); by 3 d, antigen-presenting cell activity of UV-EC had recovered to 59 +/- 11% of C-EC, although at this time NLDC-145+ Langerhans cells had reached their lowest number. The recovered antigen-presenting cell activity was critically dependent upon the class II MHChiCD11b+ cells. Sensitization of BALB/c mice through skin that contained these antigen-presenting cells (3 d after UV) resulted in tolerance to dinitrofluorobenzene. By contrast, sensitization through UV-exposed skin immediately after the exposure resulted in unresponsiveness without tolerance, demonstrating temporal association of tolerance with leukocytic infiltration. In summary, murine epidermis responds to an acute UV injury in vivo with an initial abrogation of antigen-presenting activity followed by epidermal infiltration with neutrophils, differentiated macrophages, and monocytic antigen-presenting cells that are distinct from Langerhans cells with regard to expression of Langerhans cell markers and ultrastructure.  相似文献   

17.
To define more clearly the roles of CD80 (RIP-CD80) and CD86 (RIP-CD86) in the activation of autoreactive T cells in vivo, we generated transgenic mice expressing either or both costimulatory molecules on the beta cells of the pancreas. While RIP-CD80 mice do not show any sign of autoimmunity, at the age of 7 mo RIP-CD86 transgenic mice develop a lymphoid infiltrate with both IFN-gamma- and IL-4-positive cells in the vicinity of the islets; these mice, however, never progress to diabetes. This fundamental difference in the ability of CD80 and CD86 to activate self-reactive T cells in vivo is, however, obliterated when the level of TCR signaling is increased by either TNF-alpha or transgenic MHC class II expression. These results support the suggestion that CD80 and CD86 mainly differ at the level of the intensity of the signals they deliver.  相似文献   

18.
The CD2 glycoprotein has been implicated in both positive and negative regulation of T-cell mitogenesis. To study the involvement of CD2 in T-lymphocyte development and immune responses, we have analyzed two lines of CD2-null mice, each expressing a distinct class I major histocompatibility complex (MHC)-restricted T-cell receptor (TCR). In both situations, the absence of CD2 appeared to promote the positive selection of cells in a manner that is similar to that which occurs in the absence of CD5. Consistent with this, compound homozygotes that lacked both CD2 and CD5 showed evidence of enhanced positive selection even in the absence of a transgenic TCR. Despite the observed enhancement of positive selection, the lack of CD2 was associated with defects in proliferative responses and interferon-gamma production when transgenic thymocytes and mature T lymphocytes were stimulated with the appropriate antigens. These findings raise the possibility that impaired sensitivity to selecting ligands in the thymus may provide a selective advantage that improves the efficiency of positive selection for certain TCRs. Furthermore, the results highlight the potential for a differential role for CD2 in thymocyte selection and T-cell immune responses.  相似文献   

19.
Over-expression of human or mouse CD3-epsilon transgenes profoundly disturbs T lymphocyte and natural killer (NK) cell development. One of these transgenic strains, termed tgepsilon26, displays a very early block in T lymphocyte and NK cell development. We showed previously that the absence of early thymocyte progenitors results in an abnormal thymic microenvironment. Due to this thymic defect, T cell development could not be restored by bone marrow (BM) transplantation in adult tgepsilon26 mice but could in fetal tgepsilon26 mice. Here we examine the effect of this abnormal thymic environment on NK cell development. We demonstrate that NK cell maturation in tgepsilon26 mice was reconstituted by BM derived from completely T cell-deficient mice, i.e. RAG-2(-/-) and TCRbeta x delta-/-, but not from wild-type mice. Moreover, tgepsilon26 mice transplanted with BM from partially T cell-deficient mice, i.e. TCRalpha-/-, TCRbeta-/- and TCRdelta-/- mice, did not reconstitute their NK cell compartment. We conclude from these studies that the thymic environment is not required for NK cell development, but that aberrantly educated alphabeta or gammadelta T lymphocytes can influence NK cell ontogeny. Furthermore, high serum levels of tumor necrosis factor (TNF) were detected in the vast majority of tgepsilon26 mice transplanted with BM cells derived from partially T cell-deficient mice, but never from tgepsilon26 mice transplanted with BM cells derived from completely T cell-deficient mice. The high levels of TNF may play an important role in the observed inhibition of NK cell development, since in vivo treatment with an anti-TNF antibody restored NK cell development.  相似文献   

20.
Mice transgenic for a TCR that recognizes peptide110-120 of hemagglutinin of PR8 influenza virus in the context of MHC class II I-Ed molecules express the transgenes in both CD4+ and CD8+ T cells. We have found that these TCR-hemagglutinin (TCR-HA) transgenic mice display a significantly increased resistance to the primary infection with PR8 virus compared with the wild-type mice. The TCR-HA transgenic mice mounted significant MHC type II and enhanced MHC type I-restricted cytotoxicity as well as increased cytokine responses in both spleen and lungs after infection with PR8 virus. In contrast, the primary humoral response against PR8 virus was not significantly different from that of the wild-type mice. In vivo depletion and adoptive cell transfer experiments demonstrated that both CD4+ and CD8+ TCR-HA+ T cell subsets were required for the complete clearance of pulmonary virus following infection with a dose that is 100% lethal in wild-type mice. Whereas CD4+ TCR-HA+ T cells were necessary for effective activation and local recruitment of CD8+ T cells, CD8+ TCR-HA+ T cells showed a Th1-biased pattern and MHC type II-restricted cytotoxicity. However, in the absence of in vivo expression of MHC type I molecules on the infected cells, the protection conferred by the TCR-HA+ T cells was impaired, indicating that the enhanced MHC class I-restricted cytotoxicity due to TCR-HA+ CD4+ Th cells was a critical element for clearance of the pulmonary virus by the transgenic mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号