首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
底吹电弧炉熔池混合过程的模拟研究   总被引:3,自引:0,他引:3  
李宝宽  赫冀成 《金属学报》1996,32(5):495-501
实验测量了电弧炉底部单喷嘴和多喷嘴喷吹的熔池水模型中混合时间和若干断面流场、混合时间随喷嘴直径、数量、位置及示踪剂投放点变化的函数关系。通过数值法求解了熔池流场及其混合过程。结果表明,仅靠增加喷嘴直径来改进熔池搅拌效果不显著。偏心、深熔池处布置的多喷嘴喷吹的流场混合能力较强,原因是这样布置使熔池流场具有较强烈的圆周方向对流并能获得更多的搅拌功率。  相似文献   

2.
采用CFD商业软件ANSYS Fluent中VOF多相流模型研究底吹氧气底吹熔池熔炼过程中气泡的生长行为,并研究单气泡在水中的生长破裂行为;在此基础上,再通过底吹炉熔池内部单氧枪的纵切面进行二维数值模拟,分析了熔池内部相分布、气泡的形状、生长频率、直径,以及变形、融合、破裂等过程。结果表明:水中的气泡直径越小、位置越深,停留时间越长。氧枪口处的初始气泡直径为400 mm左右,气泡生成频率约为4 Hz;稳定状态下熔池内部气泡直径分布符合Boltzmann函数分布,直径为0~100 mm的气泡数量占比80%左右;气泡破裂时间比气泡融合时间短,因此气泡更容易破裂,气泡融合后再破裂会搅拌熔体,加强传质传热效果。  相似文献   

3.
50t顶底复吹转炉的水力学模型实验研究   总被引:2,自引:1,他引:1  
通过50t顶底复吹转炉水力学模型实验,研究氧气顶底复吹转炉顶枪枪位、底吹气体流量对转炉熔炼过程中熔池搅拌和时间以及对冶炼过程的喷溅及熔池的冲击深度影响。结果表明,当模型枪位在120~210mm,实际枪位1.00~1.56m;模型底吹流量控制在0.38Nm^3/h,实际底吹流量控制在146~190Nm^3/h左右时,熔池混匀时间短,吹炼时喷溅量少。较浅的熔池冲击深度就可达到良好的搅拌效果,有利于避免冲击炉底。当冲击深度较大时,混匀时间反倒增加。  相似文献   

4.
《铸造技术》2019,(1):21-25
采用数值模拟方法,研究了转炉溅渣护炉前向熔渣底吹气体过程喷嘴个数、底吹流量以及底吹位置对熔池中流场的影响规律。结果表明,采用四喷嘴,控制底吹流量1.14 m·s~(-1),能获得混匀时间短、成分较均匀的良好流场。在熔池尺寸较大时,偏心底吹流场影响较小。  相似文献   

5.
以提高底吹熔炼炉反应区的熔炼效率及优化底吹炉反应区的氧枪结构参数为目标,运用数值模拟的方法,建立底吹熔池熔炼炉内气液两相流动的三维数学模型。应用正交表设计数值模拟的试验方案,以气含率、熔池内熔体平均速度以及平均湍动能为优化指标,采用田口方法对底吹熔池熔炼炉进行了氧枪结构多目标优化研究。结果表明,通过统计分析方法得到氧枪结构最优组合如下:氧枪直径为0.06 m,氧枪间距为0.98 m,氧枪倾角为17°。对优化结果进行统计验证,表明采用田口方法优化底吹炉氧枪结构可行,优化结果可靠。  相似文献   

6.
在1∶6物理模型上,通过水模型实验,对梅钢复吹转炉亚音速喷吹条件下的熔池搅拌情况进行了研究。结果表明,亚音速喷吹条件下的熔池均混时间明显长于超音速的。在亚音速喷吹条件下降低枪位、增加顶底吹气体流量可降低均混时间;A2底吹为本实验最佳布置方式,A6为适合预直炼的布置方式。  相似文献   

7.
底吹氩精炼过程中钢包内流体流动的数值模拟   总被引:1,自引:0,他引:1  
基于气-液双流体模型和湍流的修正k-ε模型,对底吹氩钢包精炼过程中熔池内流体流动提出了一个新的三维数学模型,应用该模型于120 t VOD的真空底吹氩精炼过程,对单孔及多孔底吹氩条件下钢包内流体的流动作了模拟和估计.  相似文献   

8.
基于ANSYS的焊接熔池传热速度对温度场影响的数值模拟   总被引:1,自引:3,他引:1  
通过设定金属在熔点以上温度时不同等效导热系数,补偿ANSYS焊接温度场模拟时高斯表面热源的缺陷。研究电弧吹力和熔池液态金属对流共同作用下,熔池高温热交换速度变化对焊缝和热影响区粗晶区热循环的影响。结果表明,熔池高温传热速度对焊缝和热影响区800℃到500℃冷却时间的影响很小,用ANSYS软件模拟电弧吹力较大的焊接温度场时,若只考虑焊缝和热影响区800℃到500℃冷却时问时,采用高斯热源加载方式是可行的。  相似文献   

9.
氧枪布置方式对底吹熔池熔炼过程的影响   总被引:1,自引:0,他引:1  
采用FLUENT软件,分别选择kε系列湍流模型和雷诺应力模型(RSM)对底吹熔池熔炼炉内的高温熔体气液两相流进行数值模拟,并且依据相似原理,通过水模型实验对数值模拟结果进行验证,综合评价发现Realizable kε模型的计算精度最高。选用Realizable kε模型,对氧枪布置方式及直径对底吹熔池熔炼过程的影响进行数值模拟研究,结果表明:在一定范围内,适当增大氧枪倾角有利于底吹熔池熔炼过程的进行,当单排氧枪倾角在17°~22°之间时,熔池各指标均处于较好的水平;相对于现场工况,双排氧枪倾角分别为12°和22°时,熔池的搅拌效果显著增强;当氧枪倾角为20°时,其有效搅拌区直径为1.475 m,对应的合理氧枪间距为0.98~1.23m;适当减小氧枪直径可以有效提高熔池气含率。  相似文献   

10.
朱荣 《金属世界》2003,(6):38-39
<正> 电炉炼钢吹氧是强化电炉冶炼的重要手段之一。利用钢管插入熔池吹氧是目前最常用的方法。为了充分利用炉内化学能,近年来吨钢用氧量逐渐增加;同时,考虑到人工吹氧的劳动条件差,不安全,吹氧效率不稳  相似文献   

11.
利用1/4水力学模型试验研究炼镍转炉溅渣工艺参数对炉衬各部位溅渣量的影响。结果表明:溅渣时间和炉体倾角是影响溅渣总量的显著性因素,且与之成正比关系。溅渣量分布受炉体角度和初始熔池深度影响较大,当炉体角度由-10°增至-30°或初始熔池深度(h/D)由0.078增至0.172时,风口对面的溅渣量比例由80%急剧降为5%左右,风口面和端墙面溅渣量相应增大。溅渣高度随着炉体角度和初始熔池深度增加而降低。溅渣模式分为喷溅、渣涌或两者共存。溅渣过程通过调整炉体倾角,可以实现较大的溅渣总量和均匀的分布。工业溅渣试验验证了水模型的研究结果,风口粘结过多等问题得到了解决。  相似文献   

12.
Conclusion The decarburizing influence and corrosive effect of molten halides depend on the concentration of impurities in them. With use of slags as heat-transfer agents there is no decarburization. However, the iron oxide concentration in the bath should not exceed 5%.E. O. Paton Institute of Electric Welding. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 12, pp. 10–12, December, 1971.  相似文献   

13.
熔池深度随电渣重熔过程变化规律的数模研究   总被引:1,自引:0,他引:1  
通过数据的数学处理,找出了熔池深度与锭高和重熔电流间的规律.这一数学模式可用于描述和预示任意重熔电流时的最大熔池深度及随锭高增长熔池深度变化的趋向.熔池的深浅,影响金属结晶生长方向改变及夹杂物和气体的去除过程.合理控制重熔电流与熔池深度,对改善ESR锭铸态组织和材料品质是有益处的.  相似文献   

14.
段梦伟  彭勇  周琦  强伟 《焊接学报》2018,39(9):113-116
针对TIG电弧增材制造过程中焊件与基板变形累积的问题,提出了水浴PTIG微变形电弧增材工艺.阐述了水浴PTIG电弧增材工艺的原理和系统组成,对比了水浴和空冷两种工艺条件下增材制造的熔敷速率、基板变形和成形质量.结果表明,水浴条件下的有效熔敷速率稳定在144 g/h,是空冷条件下的2.7倍.水浴条件下基板平面度为2.114,较空冷时降低24%.水浴对直壁体的高度方向成形精度影响较大,对宽度方向影响甚微,水浴时直壁成形件的高度标准差为2.6 mm,低于空冷(3.1 mm),宽度方向均为0.3 mm.  相似文献   

15.
本文介绍了一种能改变液体的扬程,改变液体压力的高压大流量的多功能液体泵,它对污水的抽排,高扬程灭火各种液体的输送采用液控阀和液压缸结构特点,实现往复自动循环运动。  相似文献   

16.
In Europe, the application of pneumatic processes for converting high-phosphorous hot metal have increased considerably. This is evident if only the various bottom-blowing processes are considered, but it is still more obvious if top-blowing processes are taken into account. This paper presents recent information on these developments, with particular emphasis on the LD-AC process for top blowing with oxygen containing powdered lime.  相似文献   

17.
The interracial heat-transfer coefficient at casting/mould interface is a key factor that impacts the simulation accuracy of solidification progress. At present, the simulation result of using available data is comparatively different from the practice. In the current study, the methods of radial heating and electricity measurement under steady-state condition were employed to study the nature of interfacial heat-transfer between A356 Aluminum alloy and metal mould. The experimental results show that the interracial heat-transfer between A356 Aluminum alloy and the outer mould drops linearly with time while that of A356 aluminum alloy and the inner mould increases with time during cooling. The interracial heat-transfer coefficient between A356 aluminum alloy and mould is inversely proportional to the electrical resistance.  相似文献   

18.
Previous work on this subject is reviewed briefly. It is shown that the rate of vaporization of a metal increases linearly with increasing oxygen partial pressure of the atmosphere up to a limiting rate. An attempt is made to explain the role of carbon in steel in enhancing or hindering the formation of iron oxide fumes by the top- or bottom-blowing process.  相似文献   

19.
Information on the interface condition between metal and mould is most important, since it forms the controlling resistance in the heat flow path. Generally, in the simulation of casting the interfacial heat-transfer coefficient is modelled as a function of time. This study proposes an interfacial heat-transfer model in which the heat-transfer coefficient is a function of cast surface temperature and where the prediction of gap formation is based upon the strength of the solidifying metal shell. The solidification of a thin gravity-diecast aluminium plate is simulated by the finite element method, the numerical results being compared with experimental measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号