共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Jang EY Carretero-González J Choi A Kim WJ Kozlov ME Kim T Kang TJ Baek SJ Kim DW Park YW Baughman RH Kim YH 《Nanotechnology》2012,23(23):235601
Reduced graphene oxide nanoribbon fibers were fabricated by using an electrophoretic self-assembly method without the use of any polymer or surfactant. We report electrical and field emission properties of the fibers as a function of reduction degree. In particular, the thermally annealed fiber showed superior field emission performance with a low potential for field emission (0.7?V?μm(-1)) and a giant field emission current density (400?A?cm(-2)). Moreover, the fiber maintains a high current level of 300?A?cm(-2) corresponding to 1?mA during long-term operation. 相似文献
3.
Zhong-Shuai Wu Wencai Ren Libo Gao Bilu Liu Jinping Zhao Hui-Ming Cheng 《Nano Research》2010,3(1):16-22
We report a facile approach to synthesize narrow and long graphene nanoribbons (GNRs) by sonochemically cutting chemically
derived graphene sheets (GSs). The yield of GNRs can reach ∼5 wt% of the starting GSs. The resulting GNRs are several micrometers
in length, with ∼75% being single-layer, and ∼40% being narrower than 20 nm in width. A chemical tailoring mechanism involving
oxygen-unzipping of GSs under sonochemical conditions is proposed on the basis of experimental observations and previously
reported theoretical calculations; it is suggested that the formation and distribution of line faults on graphite oxide and
GSs play crucial roles in the formation of GNRs. These results open up the possibilities of the large-scale synthesis and
various technological applications of GNRs.
相似文献
4.
Laurie Donaldson 《Materials Today》2013,16(9):306-307
5.
S.K. Georgantzinos G.I. Giannopoulos D.E. Katsareas P.A. Kakavas N.K. Anifantis 《Computational Materials Science》2011,50(7):2057-2062
An atomistic, spring-based, non-linear finite element method is implemented in order to predict the non-linear mechanical behavior of graphene nanoribbons. According this method, appropriate non-linear springs are utilized to simulate each interatomic interaction. Their force–displacement curve follows the relation between the first differentiation of the potential energy of the corresponding interaction-bond deformation. The potential which corresponds to the bond angle variation is simulated by a torsional spring, while the bond stretching is simulated by a uniaxial compression/extension spring. The linear approximation, commonly made in the literature for the bond angle bending interaction, is not followed here and thus the overall non-linear response of the specific interaction is accurately introduced into the model. Following the proposed formulation, the tensile uniaxial stress–strain behavior for various graphene nanoribbons, of zigzag as well as armchair orientation, arise. The results demonstrate that the linear and non-linear mechanical properties are strongly dependent on the structure as well as on the size of the graphene strip tested. 相似文献
6.
Yifan Zhang Kecheng Cao Takeshi Saito Hiromichi Kataura Hans Kuzmany Thomas Pichler Ute Kaiser Guowei Yang Lei Shi 《Nano Research》2022,15(3):1709-1714
Sub-nanometer armchair graphene nanoribbons(GNRs)with moderate band gap have great potential towards novel nanodevices.GNRs can be synthesized in the confined t... 相似文献
7.
AbstractGraphene is a one-atom-thick layer of graphite, where low-energy electronic states are described by the massless Dirac fermion. The orientation of the graphene edge determines the energy spectrum of π-electrons. For example, zigzag edges possess localized edge states with energies close to the Fermi level. In this review, we investigate nanoscale effects on the physical properties of graphene nanoribbons and clarify the role of edge boundaries. We also provide analytical solutions for electronic dispersion and the corresponding wavefunction in graphene nanoribbons with their detailed derivation using wave mechanics based on the tight-binding model. The energy band structures of armchair nanoribbons can be obtained by making the transverse wavenumber discrete, in accordance with the edge boundary condition, as in the case of carbon nanotubes. However, zigzag nanoribbons are not analogous to carbon nanotubes, because in zigzag nanoribbons the transverse wavenumber depends not only on the ribbon width but also on the longitudinal wavenumber. The quantization rule of electronic conductance as well as the magnetic instability of edge states due to the electron–electron interaction are briefly discussed. 相似文献
8.
We present a systematic density functional theory study of the electronic properties, optical spectra, and relative thermodynamic stability of semiconducting graphene nanoribbons. We consider ribbons with different edge nature including bare and hydrogen-terminated ribbons, several crystallographic orientations, and widths up to 3 nm. Our results can be extrapolated to wider ribbons providing a qualitative way of determining the electronic properties of ribbons with widths of practical significance. We predict that in order to produce materials with band gaps similar to Ge or InN, the width of the ribbons must be between 2 and 3 nm. If larger bang gap ribbons are needed (like Si, InP, or GaAs), their width must be reduced to 1-2 nm. According to the extrapolated inverse power law obtained in this work, armchair carbon nanoribbons of widths larger than 8 nm will present a maximum band gap of 0.3 eV, while for ribbons with a width of 80 nm the maximum possible band gap is 0.05 eV. For chiral nanoribbons the band gap oscillations rapidly vanish as a function of the chiral angle indicating that a careful design of their crystallographic nature is an essential ingredient for controlling their electronic properties. Optical excitations show important differences between ribbons with and without hydrogen termination and are found to be sensitive to the carbon nanoribbon width. This should provide a practical way of revealing information on their size and the nature of their edges. 相似文献
9.
10.
Capacitance-voltage (C-V) characteristics are important for understanding fundamental electronic structures and device applications of nanomaterials. The C-V characteristics of graphene nanoribbons (GNRs) are examined using self-consistent atomistic simulations. The results indicate strong dependence of the GNR C-V characteristics on the edge shape. For zigzag edge GNRs, highly nonuniform charge distribution in the transverse direction due to edge states lowers the gate capacitance considerably, and the self-consistent electrostatic potential significantly alters the band structure and carrier velocity. For an armchair edge GNR, the quantum capacitance is a factor of 2 smaller than its corresponding zigzag carbon nanotube, and a multiple gate geometry is less beneficial for transistor applications. Magnetic field results in pronounced oscillations on C-V characteristics. 相似文献
11.
A tight-binding analytic framework is combined with first-principles calculations to reveal the mechanism underlying the strain
effects on electronic structures of graphene and graphene nanoribbons (GNRs). It provides a unified and precise formulation
of the strain effects under various circumstances-including the shift of the Fermi (Dirac) points, the change in band gap
of armchair GNRs with uniaxial strain in a zigzag pattern and its insensitivity to shear strain, and the variation of the
k-range of edge states in zigzag GNRs under uniaxial and shear strains which determine the gap behavior via the spin polarization
interaction.
相似文献
12.
Sprinkle M Ruan M Hu Y Hankinson J Rubio-Roy M Zhang B Wu X Berger C de Heer WA 《Nature nanotechnology》2010,5(10):727-731
In spite of its excellent electronic properties, the use of graphene in field-effect transistors is not practical at room temperature without modification of its intrinsically semimetallic nature to introduce a bandgap. Quantum confinement effects can create a bandgap in graphene nanoribbons, but existing nanoribbon fabrication methods are slow and often produce disordered edges that compromise electronic properties. Here, we demonstrate the self-organized growth of graphene nanoribbons on a templated silicon carbide substrate prepared using scalable photolithography and microelectronics processing. Direct nanoribbon growth avoids the need for damaging post-processing. Raman spectroscopy, high-resolution transmission electron microscopy and electrostatic force microscopy confirm that nanoribbons as narrow as 40 nm can be grown at specified positions on the substrate. Our prototype graphene devices exhibit quantum confinement at low temperatures (4 K), and an on-off ratio of 10 and carrier mobilities up to 2,700 cm(2) V(-1) s(-1) at room temperature. We demonstrate the scalability of this approach by fabricating 10,000 top-gated graphene transistors on a 0.24-cm(2) SiC chip, which is the largest density of graphene devices reported to date. 相似文献
13.
Dimiev A Lu W Zeller K Crowgey B Kempel LC Tour JM 《ACS applied materials & interfaces》2011,3(12):4657-4661
A new composite material was prepared by incorporation of graphene nanoribbons into a dielectric host matrix. The composite possesses remarkably low loss at reasonably high permittivity values. By varying the content of the conductive filler, one can tune the loss and permittivity to desirable values over a wide range. The obtained data exemplifies how nanoscopic changes in the structure of conductive filler can affect macroscopic properties of composite material. 相似文献
14.
Band gap studies of zigzag-edge graphene ribbons are presented. While earlier calculations at LDA level show that zigzag-edge graphene ribbons become half-metallic when cross-ribbon electric fields are applied, our calculations with hybrid density functional demonstrate that finite graphene ribbons behave as half-semiconductors. The spin-dependent band gap can be changed in a wide range, making possible many applications in spintronics. 相似文献
15.
We present a first-principles calculation of the optical properties of armchair-edged graphene nanoribbons (AGNRs) with many-electron effects included. The reduced dimensionality of the AGNRs gives rise to an enhanced electron-hole binding energy for both bright and dark exciton states (0.8-1.4 eV for GNRs with width approximately 1.2 nm) and dramatically changes the optical spectra owing to a near complete transfer of oscillator strength to the exciton states from the continuum transitions. The characteristics of the excitons of the three distinct families of AGNRs are compared and discussed. The enhanced excitonic effects found here are expected to be of importance in optoelectronic applications of graphene-based nanostructures. 相似文献
16.
We use density-functional theory and the nonequilibrium Green's function method as well as phonon dispersion calculations to study the thermal conductance of graphene nanoribbons with armchair and zigzag edges, with and without hydrogen passivation. We find that low-frequency phonon bands of the zigzag ribbons are more dispersive than those of the armchair ribbons and that this difference accounts for the anisotropy in the thermal conductance of graphene nanoribbons. Comparing our results with data on large-area graphene, edge effects are shown to contribute to thermal conductance, enhance the anisotropy in thermal conductance of graphene nanoribbons, and increase thermal conductance per unit width. The edges with and without hydrogen passivation modify the atomic structure and ultimately influence the phonon thermal transport differently for the two ribbon types. 相似文献
17.
Talyzin AV Anoshkin IV Krasheninnikov AV Nieminen RM Nasibulin AG Jiang H Kauppinen EI 《Nano letters》2011,11(10):4352-4356
A novel material, graphene nanoribbons encapsulated in single-walled carbon nanotubes (GNR@SWNT), was synthesized using confined polymerization and fusion of polycyclic aromatic hydrocarbon (PAH) molecules. Formation of the GNR is possible due to confinement effects provided by the one-dimensional space inside nanotubes, which helps to align coronene or perylene molecules edge to edge to achieve dimerization and oligomerization of the molecules into long nanoribbons. Almost 100% filling of SWNT with GNR is achieved while nanoribbon length is limited only by the length of the encapsulating nanotube. The PAH fusion reaction provides a very simple and easily scalable method to synthesize GNR@SWNT in macroscopic amounts. First-principle simulations indicate that encapsulation of the GNRs is energetically favorable and that the electronic structure of the encapsulated GNRs is the same as for the free-standing ones, pointing to possible applications of the GNR@SWNT structures in photonics and nanoelectronics. 相似文献
18.
In pristine graphene ribbons, disruption of the aromatic bond network results in depopulation of covalent orbitals and tends to elongate the edge, with an effective force of f e ~ 2 eV/Å (larger for armchair edges than for zigzag edges, according to calculations). This force can have quite striking macroscopic manifestations in the case of narrow ribbons, as it favors their spontaneous twisting, resulting in the parallel edges forming a double helix, resembling DNA, with a pitch t of about 15–20 lattice parameters. Through atomistic simulations, we investigate how the torsion τ ~ 1/λ t decreases with the width of the ribbon, and observe its bifurcation: the twist of wider ribbons abruptly vanishes and instead the corrugation localizes near the edges. The length-scale (λ e) of the emerging sinusoidal “frill” at the edge is fully determined by the intrinsic parameters of graphene, namely its bending stiffness D=1.5 eV and the edge force f e with λ e ~D/f e. Analysis reveals other warping configurations and suggests their sensitivity to the chemical passivation of the edges, leading to possible applications in sensors. 相似文献
19.
20.
Shimizu T Haruyama J Marcano DC Kosinkin DV Tour JM Hirose K Suenaga K 《Nature nanotechnology》2011,6(1):45-50
The usefulness of graphene for electronics has been limited because it does not have an energy bandgap. Although graphene nanoribbons have non-zero bandgaps, lithographic fabrication methods introduce defects that decouple the bandgap from electronic properties, compromising performance. Here we report direct measurements of a large intrinsic energy bandgap of approximately 50 meV in nanoribbons (width, approximately 100 nm) fabricated by high-temperature hydrogen-annealing of unzipped carbon nanotubes. The thermal energy required to promote a charge to the conduction band (the activation energy) is measured to be seven times greater than in lithographically defined nanoribbons, and is close to the width of the voltage range over which differential conductance is zero (the transport gap). This similarity suggests that the activation energy is in fact the intrinsic energy bandgap. High-resolution transmission electron and Raman microscopy, in combination with an absence of hopping conductance and stochastic charging effects, suggest a low defect density. 相似文献