首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 593 毫秒
1.
介孔分子筛P-SBA-3催化合成月桂酸乙酯   总被引:2,自引:0,他引:2  
采用H3PO4对介孔分子筛SBA-3进行改性,制得介孔分子筛P—SBA-3,并将其用于月桂酸乙酯的催化合成。考察了催化剂磷硅摩尔比、反应时间、反应温度、催化剂用量及酸醇摩尔比对月桂酸乙酯合成的影响,确定了最佳反应条件为:介孔分子筛P—SBA-3催化剂用量(以原料质量计)2.0%且催化剂磷硅摩尔比8:100、反应温度80℃、酸醇摩尔比1:4、反应时间5h。研究结果表明,介孔分子筛P—SBA-3具有良好的催化效率和稳定性,是合成月桂酸乙酯理想的分子筛催化剂。  相似文献   

2.
以纯硅SBA-15为载体,合成了具有纯硅SBA-15结构的介孔分子筛催化剂ZrO2/SBA-15。用此催化剂催化合成柠檬酸正丁酯,考察了催化剂中硅锆摩尔比、催化剂用量、反应时间、反应温度、酸醇摩尔比对酯化反应的影响,得出合成柠檬酸正丁酯的最佳反应条件:催化剂中最佳硅锆摩尔比为100:3,正丁醇用量2mol,酸醇摩尔比1:6,催化剂用量为原料质量的2%,反应温度130℃,反应5h,柠檬酸转化率为88%。介孔分子筛催化剂ZrO2/SBA-15具有较高的稳定性,是合成柠檬酸三丁酯较为理想的分子筛催化剂。  相似文献   

3.
介孔分子筛P-SBA-15催化合成十一碳烯酸异丙酯   总被引:6,自引:0,他引:6  
采用后合成法,将磷酸固载在纯硅介孔分子筛SBA-15的表面。XRD表征结果表明,高温焙烧后的介孔分子筛P—SBA-15保持了稳定的介孔结构,该催化剂可用于十一碳烯酸与异丙醇的酯化反应,与其它几种微孔分子筛催化剂相比,P—SBA-15分子筛是最好的固体酸催化剂。考察了磷酸的负载量、反应温度、酸醇比、催化剂用量等因素对酯化反应性能的影响。得到最佳反应条件为:反应温度140℃,酸/醇摩尔比1/1,反应时间6 h,催化剂用量为总料量质量的10%。结果表明,磷的负载量为7%(质量分数)的介孔分子筛P-SBA-15是替代液体酸合成十一碳烯酸异丙酯较为理想的固体酸催化剂,且有良好的稳定性。  相似文献   

4.
采用后合成法,将磷酸负载在介孔分子筛SBA-15的表面,制备出活性较高的固体酸催化剂P-SBA-15,将该催化剂用于合成油酸丁酯。重点考察了磷酸的负载量、反应温度、酸醇摩尔比、催化剂的加入量、反应时间对酯化反应性能的影响。得到最佳反应条件为:磷酸的负载量占介孔分子筛SBA-15用量的6%、反应温度130℃、酸醇摩尔比1:2、催化剂用量占总料量的1.5%,反应时间5h,油酸转化率最高达61.3%,并发现介孔分子筛催化剂P-SBA-15具有良好的稳定性。  相似文献   

5.
用溶胶-凝胶方法合成并表征了磷钨酸铯改性的SBA-15介孔分子筛催化剂Cs2.5-TPA—SBA-15。XRD表征结果表明,当催化剂中磷的摩尔分数为0.88%时,Cs2.5-TPA—SBA-15仍保持介孔分子筛SBA-15的晶体结构;BET表征结果验证了介孔结构的存在;FTIR表征结果表明了Keggin结构的存在以及Cs2.5—TPA与分子筛之间化学作用的存在;TGA-DTA表征结果表明,Cs^+的引入增加了催化剂的热稳定性。将Cs2.5-TPA-SBA-15应用于丙烯酸与叔丁醇的酯化反应,实验结果表明,与其它铯化学计量比催化剂相比,Cs2.5-TPA—SBA-15的酸催化活性最好。  相似文献   

6.
MCM-48分子筛负载磷钨杂多酸催化合成缩醛(酮)   总被引:22,自引:8,他引:14  
王敏  杨水金 《石油化工》2006,35(12):1160-1165
制备了MCM-48分子筛负载磷钨杂多酸H3PW12O40/MCM-48催化剂,并以乙酰乙酸乙酯、环己酮、丁酮、苯甲醛和正丁醛与二元醇(乙二醇,1,2-丙二醇)等为原料合成了环己酮1,2-丙二醇缩酮等10种缩醛(酮)。采用X射线衍射、傅里叶变换红外光谱、核磁共振等方法对试样进行了表征;研究了酮与醇摩尔比、催化剂用量、环己烷用量、反应时间对环己酮1,2-丙二醇缩酮收率的影响。实验结果表明,H3PW12O40在MCM-48分子筛上具有较高的分散性且催化剂仍能保持较大的介孔孔道,负载后的H3PW12O40仍保持着Keggin基本结构;在n(醛/酮)∶n(乙二醇/1,2-丙二醇)=1∶1.4、催化剂的用量占反应物料总质量的0.4%、反应时间60min条件下,10种缩醛(酮)的收率为80.6%~94.2%。  相似文献   

7.
金明善  翁永根  索掌怀 《石油化工》2004,33(Z1):886-887
采用Cs2CO3中和H3PW12O40/SiO2及H3PW12O40中和Cs2CO3/SiO2两种不同方法制备了Cs2.5H0.5PW12O40/SiO2催化剂,XRD结果表明该催化剂仍基本保持了原有磷钨酸的Keggin结构.以乙酸乙酯的合成反应为模型考察了它们的催化性能.发现其活性变化次序为Cs2.5H0.5PW12O40/SiO2<H3PW12O40/SiO2<Cs2.5H0.5PW12O4.对不同的杂多酸铯盐,其活性变化次序为Cs2.5H0.5PMo12O40/SiO2>Cs2.5H1.5SiW12O40/SiO2>Cs2.5H0.5PW12O40/SiO2.尽管两种方法得到的负载型杂多酸铯盐催化剂具有相同的物相,但采用酸中和Cs2CO3/SiO2得到的催化剂显示出相对更好的催化活性,可能与其表面酸性较强有关.  相似文献   

8.
采用两步浸渍法制备了硅胶负载磷钨酸铯催化剂Cs2.5H0.5PW12O40/SiO2,将其用于催化合成对甲氧基苯乙酮(p-MOAP)。采用X射线衍射、傅里叶变换红外光谱和NH3程序升温脱附等技术对Cs2.5H0.5PW12O40/SiO2催化剂进行了表征,考察了Cs2.5H0.5PW12O40负载量、催化剂用量、反应物配比、反应温度、反应时间等对p-MOAP合成反应的影响。表征结果显示,Cs2.5H0.5PW12O40和Cs2.5H0.5PW12O40/SiO2催化剂保持了H3PW12O40的Keggin结构,且Cs2.5H0.5PW12O40/SiO2催化剂中Cs2.5H0.5PW12O40主要聚集在载体表面。实验结果表明,优化的合成p-MOAP工艺条件为:Cs2.5H0.5PW12O40负载量为30%(质量分数)的Cs2.5H0.5PW12O40/SiO2催化剂用量为4%(占总物料的质量分数)、苯甲醚与乙酸酐的摩尔比为10、反应温度100℃、反应时间120min。在此条件下,使用新鲜催化剂时,p-MOAP的收率达到83.4%,选择性达到96.1%。  相似文献   

9.
实验以后合成法制备介孔分子筛催化剂SBA-15-PO_3H_2。讨论了焙烧温度和时间、搅拌时间、磷硅摩尔比等对催化剂性能的影响。其最佳合成条件为:焙烧温度为500℃,焙烧时间5 h,搅拌时间4 h,n(P):n(Si)=7:100。采用XRD、SEM/TEM分析介孔分子筛的结构和形貌,实验结果表明催化剂SBA-15-PO_3H_2保持了纯硅SBA-15二维六方介孔结构。该催化剂重复使用性能良好。  相似文献   

10.
P-SBA-15分子筛催化合成2,4-二叔丁基苯酚   总被引:11,自引:0,他引:11  
采用负载法对介孔分子筛SBA-15进行磷酸改性,制备出含磷酸的介孔分子筛催化剂P-SBA-15。该催化剂用于叔丁醇与苯酚的烷基化反应,考察了它的催化性能,结果表明,在苯酚和叔丁醇的烷基化反应中,介孔分子筛催化剂P-SBA-15的活性高于沸石分子筛;考察了不同的反应条件对催化剂性能的影响,得出了苯酚和叔丁醇烷基化反应的最佳条件:反应温度为120℃;醇酚比为2:1(摩尔比);空速2h^-1。,最后还研究了该催化剂的稳定性。  相似文献   

11.
制备了过渡金属修饰的磷钨酸盐(M_xH_(3-2x)PW_(12)O_(40),M=Co,Cu,Zn,Ni)催化剂,用BET,ICP,XRD,FTIR,NH_3-TPD等技术对其性能进行了表征,并考察了该系列催化剂在芳香类化合物的Friedel-Crafts乙酰化反应中的活性。实验结果表明,多孔性M_xH_(3-2x)PW_(12)O_(40)保持了磷钨酸的Keggin结构和酸强度,酸量明显大于磷钨酸。在茴香醚乙酰化反应中,M_xH_(3-2x)PW_(12)O_(40)(除Co_(1.5)PW_(12)O_(40)外)的催化活性和选择性明显高于磷钨酸和Cs_(2.5)H_(0.5)PW_(12)O_(40),其中Co_(0.5)H_2PW_(12)O_(40)的催化活性最高。以Co_(0.5)H_2PW_(12)O_(40)为催化剂合成对甲氧基苯乙酮(p-MOPA)时,P-MOPA收率和选择性分别达到84.36%和96.78%。Co_(0.5)H_2PW_(12)O_(40)用于苯衍生物、噻吩及其衍生物的乙酰化反应时电呈现较好的催化活性和选择性,其中,2-乙酰噻吩的收率和选择性分别达到86.93%和99%以上。  相似文献   

12.
用固体研磨法对 SBA-15分子筛进行 La-SO_4~(2-)改性,制备了 La-SO_4~(2-)改性 SBA-15分子筛(La-SO_4~(2-)/SBA-15)催化剂,采用 X 射线衍射、红外光谱和低温 N_2吸附-脱附、热重-差热分析、NH_3-程序升温脱附等方法对 La-SO_4~(2-)/SBA-15催化剂进行了表征。表征结果显示,La 已进入 SBA-15分子筛中,制得的 La-SO_4~(2-)/SBA-15催化剂保持高度有序的二维六方介孔结构。用 Hammett 指示剂法测得 La-SO_4~(2-)/SBA-15催化剂的表面酸强度(H_0)为2.77相似文献   

13.
固体酸催化正己醇酯化反应的研究   总被引:3,自引:1,他引:2  
分别以固体酸CsnH3 -nPW12 O40 和SO2 -4/ZrO2 为催化剂研究了正己醇酯化反应。考察了磷钨酸铯盐中铯含量和酸强度、SO2 -4/ZrO2 中酸浓度和酸强度以及不同有机酸对正己醇酯化反应的影响。结果表明 ,正己醇的酯化反应活性随着固体酸的酸强度和比表面积的增加而增加。利用IR、XRD、空气吸附法等检测手段分别对催化剂进行了表征。  相似文献   

14.
二氧化硅负载磷钨酸催化合成2-乙酰噻吩   总被引:2,自引:0,他引:2  
考察了几种杂多酸催化合成2-乙酰噻吩的催化活性,筛选出催化活性较高的磷钨酸作为前驱体,利用不同载体、采用不同的负载方法制备负载型催化剂,并考察其催化合成2-乙酰噻吩的催化活性。结果表明,采用浸泡法,SiO_2负载磷钨酸的催化活性最高。在H_3PW_(12)O_(40)/SiO_2催化剂用量为1%(以总物料量计)、n (噻吩):n(乙酐)=2:1,反应温度80℃,反应时间120 min条件下,2-乙酰噻吩的产率达85.92%,选择性达99.9%,催化剂可重复使用。  相似文献   

15.
Ce改性SBA-15分子筛催化合成棕榈酸甲酯   总被引:2,自引:0,他引:2  
用浸渍法对SBA-15分子筛进行Ce改性,制备了Ce(SO4)2/SBA-15催化剂,采用X射线衍射、红外光谱、N2吸附-脱附、热重-差热分析方法对试样进行了表征。表征结果显示,Ce已进入SBA-15分子筛中,制得的Ce(SO4)2/SBA-15催化剂保持高度有序的介孔二维六角结构。用Hammett指示剂法测得Ce(SO4)2/SBA-15催化剂的表面酸强度为0.99~1.80,酸量为0.2344mmol/g。采用Ce(SO4)2/SBA-15催化剂催化甲醇和棕榈酸酯化合成棕榈酸甲酯,优化的合成条件为:n(棕榈酸)∶n(甲醇)=1∶15,催化剂用量为棕榈酸质量的5.0%,反应时间8h。在此条件下,酯化率大于92%。  相似文献   

16.
介绍了以自制二氧化钛负载磷钨杂多酸(H3PW12O40/TiO2)为多相催化剂,乙酰乙酸乙酯和乙二醇为原料合成苹果酯的方法.考察了原料摩尔比、催化剂用量、反应时间诸因素对苹果酯产品收率的影响.实验结果表明,二氧化钛负载磷钨杂多酸是合成苹果酯的良好催化剂,在乙酰乙酸乙酯与乙二醇摩尔比为1:1.5,催化剂用量占反应物料总量的0.8%,环己烷为带水剂,其用量8 mL,反应时间1.0 h的优化条件下,苹果酯的收率为78.2%.  相似文献   

17.
高性能环氧树脂二氧化双环戊二烯的制备   总被引:1,自引:0,他引:1  
以H_3PW_(12)O_(40)/SiO_2为催化剂,H_2O_2为氧源催化氧化双环戊二烯环制备了高性能环氧树脂二氧化双环戊二烯。考察了催化剂用量、反应物料比、反应温度、反应时间及反应溶剂等条件对环氧化反应的影响。适宜的工艺条件为:三氯甲烷为溶剂,0.5 g负载量30%的H_3PW_(12)O_(40)/SiO_2为催化剂,n(C_(10)H_(12)):n(H_2O_2)= 1:3,反应温度60℃,反应时间12 h。在此条件下,反应物的转化率可达到68.9%,二氧化双环戊二烯的选择率达到97.2%.该催化剂重复使用3次后,催化活性依然保持很好。产物经质谱分析为目标产物,并利用红外光谱、微孔测量仪对催化剂结构、性能进行了表征。  相似文献   

18.
 以正硅酸乙酯为硅源、异丙基氧锆为锆源、十六烷基三乙基溴化铵(CTEABr)为模板剂,采用原位合成法在强酸性条件下合成出具有立方相结构的 SBA-1和Zr-SBA-1。采用共浸渍法制备出 SBA-1和 Zr-SBA-1负载 Pt-H3PW12O40催化剂2%Pt-30%HPA/SBA-1和2%Pt-30%HPA/Zr-SBA-1。利用 XRD、FT-IR 和 N2吸附-脱附手段对样品进行了表征。在微型固定床反应装置上考察了催化剂对正戊烷的异构化催化性能。并对3种不同结构的 SiO2载体(SBA-1、MCM-41、SiO2)负载 Pt-HPA 催化剂的异构化催化性能进行了对比。结果表明,2%Pt-30%HPA/SBA-1催化剂表现出最高的异构化催化活性,正戊烷异构化反应终点(120 min)时,正戊烷转化率和异戊烷选择性分别为65%和96%。当向 SBA-1骨架中掺杂 Zr 元素以后,2%Pt-30%HPA/Zr-SBA-1催化剂的异构化催化活性急剧下降,且 Zr 的掺杂量对催化剂活性没有显著影响。3种不同结构 SiO2载体的比表面积大小与其相应的负载 Pt-HPA 催化剂异构化催化活性高低顺序一致,载体比表面积大小是影响催化剂异构化催化活性高低的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号